Modeling blood diseases with human induced pluripotent stem cells

Induced pluripotent stem cells (iPSCs) are derived from somatic cells through a reprogramming process, which converts them to a pluripotent state, akin to that of embryonic stem cells. Over the past decade, iPSC models have found increasing applications in the study of human diseases, with blood dis...

Full description

Bibliographic Details
Main Authors: Maria Georgomanoli, Eirini P. Papapetrou
Format: Article
Language:English
Published: The Company of Biologists 2019-06-01
Series:Disease Models & Mechanisms
Subjects:
Online Access:http://dmm.biologists.org/content/12/6/dmm039321
Description
Summary:Induced pluripotent stem cells (iPSCs) are derived from somatic cells through a reprogramming process, which converts them to a pluripotent state, akin to that of embryonic stem cells. Over the past decade, iPSC models have found increasing applications in the study of human diseases, with blood disorders featuring prominently. Here, we discuss methodological aspects pertaining to iPSC generation, hematopoietic differentiation and gene editing, and provide an overview of uses of iPSCs in modeling the cell and gene therapy of inherited genetic blood disorders, as well as their more recent use as models of myeloid malignancies. We also discuss the strengths and limitations of iPSCs compared to model organisms and other cellular systems commonly used in hematology research.
ISSN:1754-8403
1754-8411