On Normalized Laplacian Spectra of the Weakly Zero-Divisor Graph of the Ring ℤ<sub>n</sub>

For a finite commutative ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">R</mi></semantics></math></inline-formula> with identity <inline-formu...

Full description

Bibliographic Details
Main Authors: Nazim, Nadeem Ur Rehman, Ahmad Alghamdi
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/20/4310
_version_ 1797573087260049408
author Nazim
Nadeem Ur Rehman
Ahmad Alghamdi
author_facet Nazim
Nadeem Ur Rehman
Ahmad Alghamdi
author_sort Nazim
collection DOAJ
description For a finite commutative ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">R</mi></semantics></math></inline-formula> with identity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>, the weakly zero-divisor graph of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">R</mi></semantics></math></inline-formula> denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>Γ</mo><mo>(</mo><mi mathvariant="fraktur">R</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a simple undirected graph having vertex set as a set of non-zero zero-divisors of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">R</mi></semantics></math></inline-formula> and two distinct vertices <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">a</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">b</mi></semantics></math></inline-formula> are adjacent if and only if there exist elements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>∈</mo><mi>ann</mi><mo>(</mo><mi mathvariant="fraktur">a</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>∈</mo><mi>ann</mi><mo>(</mo><mi mathvariant="fraktur">b</mi><mo>)</mo></mrow></semantics></math></inline-formula> satisfying the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>s</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. The zero-divisor graph of a ring is a spanning sub-graph of the weakly zero-divisor graph. This article finds the normalized Laplacian spectra of the weakly zero-divisor graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>Γ</mo><mo>(</mo><mi mathvariant="fraktur">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Specifically, the investigation is carried out on the weakly zero-divisor graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>Γ</mo><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi mathvariant="fraktur">n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> for various values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">n</mi></semantics></math></inline-formula>.
first_indexed 2024-03-10T21:04:41Z
format Article
id doaj.art-604848ab3daa4dc59ba45512df2b9d1a
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T21:04:41Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-604848ab3daa4dc59ba45512df2b9d1a2023-11-19T17:14:11ZengMDPI AGMathematics2227-73902023-10-011120431010.3390/math11204310On Normalized Laplacian Spectra of the Weakly Zero-Divisor Graph of the Ring ℤ<sub>n</sub>Nazim0Nadeem Ur Rehman1Ahmad Alghamdi2Department of Mathematics, Aligarh Muslim University, Aligarh 202002, IndiaDepartment of Mathematics, Aligarh Muslim University, Aligarh 202002, IndiaMathematics Department, Faculty of Sciences, Umm Al-Qura University, P.O. Box 14035, Makkah 21955, Saudi ArabiaFor a finite commutative ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">R</mi></semantics></math></inline-formula> with identity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>, the weakly zero-divisor graph of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">R</mi></semantics></math></inline-formula> denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>Γ</mo><mo>(</mo><mi mathvariant="fraktur">R</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a simple undirected graph having vertex set as a set of non-zero zero-divisors of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">R</mi></semantics></math></inline-formula> and two distinct vertices <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">a</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">b</mi></semantics></math></inline-formula> are adjacent if and only if there exist elements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>∈</mo><mi>ann</mi><mo>(</mo><mi mathvariant="fraktur">a</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>∈</mo><mi>ann</mi><mo>(</mo><mi mathvariant="fraktur">b</mi><mo>)</mo></mrow></semantics></math></inline-formula> satisfying the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>s</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. The zero-divisor graph of a ring is a spanning sub-graph of the weakly zero-divisor graph. This article finds the normalized Laplacian spectra of the weakly zero-divisor graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>Γ</mo><mo>(</mo><mi mathvariant="fraktur">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Specifically, the investigation is carried out on the weakly zero-divisor graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>Γ</mo><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi mathvariant="fraktur">n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> for various values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">n</mi></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/11/20/4310normalized Laplacian spectraweakly zero-divisor graphring of integers modulo nEuler totient function
spellingShingle Nazim
Nadeem Ur Rehman
Ahmad Alghamdi
On Normalized Laplacian Spectra of the Weakly Zero-Divisor Graph of the Ring ℤ<sub>n</sub>
Mathematics
normalized Laplacian spectra
weakly zero-divisor graph
ring of integers modulo n
Euler totient function
title On Normalized Laplacian Spectra of the Weakly Zero-Divisor Graph of the Ring ℤ<sub>n</sub>
title_full On Normalized Laplacian Spectra of the Weakly Zero-Divisor Graph of the Ring ℤ<sub>n</sub>
title_fullStr On Normalized Laplacian Spectra of the Weakly Zero-Divisor Graph of the Ring ℤ<sub>n</sub>
title_full_unstemmed On Normalized Laplacian Spectra of the Weakly Zero-Divisor Graph of the Ring ℤ<sub>n</sub>
title_short On Normalized Laplacian Spectra of the Weakly Zero-Divisor Graph of the Ring ℤ<sub>n</sub>
title_sort on normalized laplacian spectra of the weakly zero divisor graph of the ring z sub n sub
topic normalized Laplacian spectra
weakly zero-divisor graph
ring of integers modulo n
Euler totient function
url https://www.mdpi.com/2227-7390/11/20/4310
work_keys_str_mv AT nazim onnormalizedlaplacianspectraoftheweaklyzerodivisorgraphoftheringzsubnsub
AT nadeemurrehman onnormalizedlaplacianspectraoftheweaklyzerodivisorgraphoftheringzsubnsub
AT ahmadalghamdi onnormalizedlaplacianspectraoftheweaklyzerodivisorgraphoftheringzsubnsub