On Born’s Reciprocal Relativity, Algebraic Extensions of the Yang and Quaplectic Algebra, and Noncommutative Curved Phase Spaces

After a brief introduction of Born’s reciprocal relativity theory is presented, we review the construction of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mi>e</mi>...

Full description

Bibliographic Details
Main Author: Carlos Castro Perelman
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/9/3/144
_version_ 1797608767554060288
author Carlos Castro Perelman
author_facet Carlos Castro Perelman
author_sort Carlos Castro Perelman
collection DOAJ
description After a brief introduction of Born’s reciprocal relativity theory is presented, we review the construction of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mi>e</mi><mi>f</mi><mi>o</mi><mi>r</mi><mi>m</mi><mi>e</mi><mi>d</mi></mrow></semantics></math></inline-formula> quaplectic group that is given by the semi-direct product of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow></semantics></math></inline-formula> with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mi>e</mi><mi>f</mi><mi>o</mi><mi>r</mi><mi>m</mi><mi>e</mi><mi>d</mi></mrow></semantics></math></inline-formula> (noncommutative) Weyl–Heisenberg group corresponding to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>o</mi><mi>n</mi><mi>c</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>t</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>e</mi></mrow></semantics></math></inline-formula> fiber coordinates and momenta <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><msub><mi>X</mi><mi>a</mi></msub><mo>,</mo><msub><mi>X</mi><mi>b</mi></msub><mo>]</mo><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><msub><mi>P</mi><mi>a</mi></msub><mo>,</mo><msub><mi>P</mi><mi>b</mi></msub><mo>]</mo><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>. This construction leads to more general algebras given by a two-parameter family of deformations of the quaplectic algebra, and to further algebraic extensions involving antisymmetric tensor coordinates and momenta of higher ranks <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><msub><mi>X</mi><mrow><msub><mi>a</mi><mn>1</mn></msub><msub><mi>a</mi><mn>2</mn></msub><mo>⋯</mo><msub><mi>a</mi><mi>n</mi></msub></mrow></msub><mo>,</mo><msub><mi>X</mi><mrow><msub><mi>b</mi><mn>1</mn></msub><msub><mi>b</mi><mn>2</mn></msub><mo>⋯</mo><msub><mi>b</mi><mi>n</mi></msub></mrow></msub><mo>]</mo><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><msub><mi>P</mi><mrow><msub><mi>a</mi><mn>1</mn></msub><msub><mi>a</mi><mn>2</mn></msub><mo>⋯</mo><msub><mi>a</mi><mi>n</mi></msub></mrow></msub><mo>,</mo><msub><mi>P</mi><mrow><msub><mi>b</mi><mn>1</mn></msub><msub><mi>b</mi><mn>2</mn></msub><mo>⋯</mo><msub><mi>b</mi><mi>n</mi></msub></mrow></msub><mo>]</mo><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>. We continue by examining algebraic extensions of the Yang algebra in extended noncommutative phase spaces and compare them with the above extensions of the deformed quaplectic algebra. A solution is found for the exact analytical mapping of the noncommuting <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mi>μ</mi></msup><mo>,</mo><msup><mi>p</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> operator variables (associated to an 8D curved phase space) to the canonical <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Y</mi><mi>A</mi></msup><mo>,</mo><msup><mi mathvariant="sans-serif">Π</mi><mi>A</mi></msup></mrow></semantics></math></inline-formula> operator variables of a flat 12D phase space. We explore the geometrical implications of this mapping which provides, in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mi>l</mi><mi>a</mi><mi>s</mi><mi>s</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>l</mi></mrow></semantics></math></inline-formula> limit, the embedding functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Y</mi><mi>A</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow><mo>,</mo><msup><mi mathvariant="sans-serif">Π</mi><mi>A</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of an 8D curved phase space into a flat 12D phase space background. The latter embedding functions determine the functional forms of the base spacetime metric <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>g</mi><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, the fiber metric of the vertical space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>h</mi><mrow><mi>a</mi><mi>b</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and the nonlinear connection <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mrow><mi>a</mi><mi>μ</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> associated with the 8D cotangent space of the 4D spacetime. Consequently, we find a direct link between noncommutative curved phase spaces in lower dimensions and commutative flat phase spaces in higher dimensions.
first_indexed 2024-03-11T05:48:08Z
format Article
id doaj.art-60502cb3da39400cae032d46b9bcb7d0
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-11T05:48:08Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-60502cb3da39400cae032d46b9bcb7d02023-11-17T14:16:03ZengMDPI AGUniverse2218-19972023-03-019314410.3390/universe9030144On Born’s Reciprocal Relativity, Algebraic Extensions of the Yang and Quaplectic Algebra, and Noncommutative Curved Phase SpacesCarlos Castro Perelman0Ronin Institute, 127 Haddon Place, Montclair, NJ 07043, USAAfter a brief introduction of Born’s reciprocal relativity theory is presented, we review the construction of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mi>e</mi><mi>f</mi><mi>o</mi><mi>r</mi><mi>m</mi><mi>e</mi><mi>d</mi></mrow></semantics></math></inline-formula> quaplectic group that is given by the semi-direct product of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow></semantics></math></inline-formula> with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mi>e</mi><mi>f</mi><mi>o</mi><mi>r</mi><mi>m</mi><mi>e</mi><mi>d</mi></mrow></semantics></math></inline-formula> (noncommutative) Weyl–Heisenberg group corresponding to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>o</mi><mi>n</mi><mi>c</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>t</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>e</mi></mrow></semantics></math></inline-formula> fiber coordinates and momenta <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><msub><mi>X</mi><mi>a</mi></msub><mo>,</mo><msub><mi>X</mi><mi>b</mi></msub><mo>]</mo><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><msub><mi>P</mi><mi>a</mi></msub><mo>,</mo><msub><mi>P</mi><mi>b</mi></msub><mo>]</mo><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>. This construction leads to more general algebras given by a two-parameter family of deformations of the quaplectic algebra, and to further algebraic extensions involving antisymmetric tensor coordinates and momenta of higher ranks <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><msub><mi>X</mi><mrow><msub><mi>a</mi><mn>1</mn></msub><msub><mi>a</mi><mn>2</mn></msub><mo>⋯</mo><msub><mi>a</mi><mi>n</mi></msub></mrow></msub><mo>,</mo><msub><mi>X</mi><mrow><msub><mi>b</mi><mn>1</mn></msub><msub><mi>b</mi><mn>2</mn></msub><mo>⋯</mo><msub><mi>b</mi><mi>n</mi></msub></mrow></msub><mo>]</mo><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><msub><mi>P</mi><mrow><msub><mi>a</mi><mn>1</mn></msub><msub><mi>a</mi><mn>2</mn></msub><mo>⋯</mo><msub><mi>a</mi><mi>n</mi></msub></mrow></msub><mo>,</mo><msub><mi>P</mi><mrow><msub><mi>b</mi><mn>1</mn></msub><msub><mi>b</mi><mn>2</mn></msub><mo>⋯</mo><msub><mi>b</mi><mi>n</mi></msub></mrow></msub><mo>]</mo><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>. We continue by examining algebraic extensions of the Yang algebra in extended noncommutative phase spaces and compare them with the above extensions of the deformed quaplectic algebra. A solution is found for the exact analytical mapping of the noncommuting <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mi>μ</mi></msup><mo>,</mo><msup><mi>p</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> operator variables (associated to an 8D curved phase space) to the canonical <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Y</mi><mi>A</mi></msup><mo>,</mo><msup><mi mathvariant="sans-serif">Π</mi><mi>A</mi></msup></mrow></semantics></math></inline-formula> operator variables of a flat 12D phase space. We explore the geometrical implications of this mapping which provides, in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mi>l</mi><mi>a</mi><mi>s</mi><mi>s</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>l</mi></mrow></semantics></math></inline-formula> limit, the embedding functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Y</mi><mi>A</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow><mo>,</mo><msup><mi mathvariant="sans-serif">Π</mi><mi>A</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of an 8D curved phase space into a flat 12D phase space background. The latter embedding functions determine the functional forms of the base spacetime metric <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>g</mi><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, the fiber metric of the vertical space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>h</mi><mrow><mi>a</mi><mi>b</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and the nonlinear connection <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mrow><mi>a</mi><mi>μ</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> associated with the 8D cotangent space of the 4D spacetime. Consequently, we find a direct link between noncommutative curved phase spaces in lower dimensions and commutative flat phase spaces in higher dimensions.https://www.mdpi.com/2218-1997/9/3/144Born Reciprocal RelativityYang AlgebraPhase SpacesFinsler Geometry
spellingShingle Carlos Castro Perelman
On Born’s Reciprocal Relativity, Algebraic Extensions of the Yang and Quaplectic Algebra, and Noncommutative Curved Phase Spaces
Universe
Born Reciprocal Relativity
Yang Algebra
Phase Spaces
Finsler Geometry
title On Born’s Reciprocal Relativity, Algebraic Extensions of the Yang and Quaplectic Algebra, and Noncommutative Curved Phase Spaces
title_full On Born’s Reciprocal Relativity, Algebraic Extensions of the Yang and Quaplectic Algebra, and Noncommutative Curved Phase Spaces
title_fullStr On Born’s Reciprocal Relativity, Algebraic Extensions of the Yang and Quaplectic Algebra, and Noncommutative Curved Phase Spaces
title_full_unstemmed On Born’s Reciprocal Relativity, Algebraic Extensions of the Yang and Quaplectic Algebra, and Noncommutative Curved Phase Spaces
title_short On Born’s Reciprocal Relativity, Algebraic Extensions of the Yang and Quaplectic Algebra, and Noncommutative Curved Phase Spaces
title_sort on born s reciprocal relativity algebraic extensions of the yang and quaplectic algebra and noncommutative curved phase spaces
topic Born Reciprocal Relativity
Yang Algebra
Phase Spaces
Finsler Geometry
url https://www.mdpi.com/2218-1997/9/3/144
work_keys_str_mv AT carloscastroperelman onbornsreciprocalrelativityalgebraicextensionsoftheyangandquaplecticalgebraandnoncommutativecurvedphasespaces