Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcing

<p>As a consequence of extreme heat and drought, record-breaking wildfires developed and ravaged south-eastern Australia during the fire season 2019–2020. The fire strength reached its paroxysmal phase at the turn of the year 2019–2020. During this phase, pyrocumulonimbus clouds (pyroCb) devel...

Full description

Bibliographic Details
Main Authors: P. Sellitto, R. Belhadji, C. Kloss, B. Legras
Format: Article
Language:English
Published: Copernicus Publications 2022-07-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/9299/2022/acp-22-9299-2022.pdf
_version_ 1811295945064710144
author P. Sellitto
P. Sellitto
R. Belhadji
C. Kloss
B. Legras
author_facet P. Sellitto
P. Sellitto
R. Belhadji
C. Kloss
B. Legras
author_sort P. Sellitto
collection DOAJ
description <p>As a consequence of extreme heat and drought, record-breaking wildfires developed and ravaged south-eastern Australia during the fire season 2019–2020. The fire strength reached its paroxysmal phase at the turn of the year 2019–2020. During this phase, pyrocumulonimbus clouds (pyroCb) developed and injected biomass burning aerosols and gases into the upper troposphere and lower stratosphere (UTLS). The UTLS aerosol layer was massively perturbed by these fires, with aerosol extinction increased by a factor of 3 in the visible spectral range in the Southern Hemisphere, with respect to a background atmosphere, and stratospheric aerosol optical depth reaching values as large as 0.015 in February 2020. Using the best available description of this event by observations, we estimate the radiative forcing (RF) of such perturbations of the Southern Hemispheric aerosol layer. We use offline radiative transfer modelling driven by observed information of the aerosol extinction perturbation and its spectral variability obtained from limb satellite measurements. Based on hypotheses on the absorptivity and the angular scattering properties of the aerosol layer, the regional (at three latitude bands in the Southern Hemisphere) clear-sky TOA (top-of-atmosphere) RF is found varying from small positive values to relatively large negative values (up to <span class="inline-formula">−2.0</span> W m<span class="inline-formula"><sup>−2</sup></span>), and the regional clear-sky surface RF is found to be consistently negative and reaching large values (up to <span class="inline-formula">−4.5</span> W m<span class="inline-formula"><sup>−2</sup></span>). We argue that clear-sky positive values are unlikely for this event, if the ageing/mixing of the biomass burning plume is mirrored by the evolution of its optical properties. Our best estimate for the area-weighted global-equivalent clear-sky RF is <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.35</mn><mo>±</mo><mn mathvariant="normal">0.21</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="0e7f3e36ab8722a4405fca577758aa6a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-9299-2022-ie00001.svg" width="64pt" height="10pt" src="acp-22-9299-2022-ie00001.png"/></svg:svg></span></span> (TOA RF) and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.94</mn><mo>±</mo><mn mathvariant="normal">0.26</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="bd501a800047bfc59def03f942a4842d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-9299-2022-ie00002.svg" width="64pt" height="10pt" src="acp-22-9299-2022-ie00002.png"/></svg:svg></span></span> W m<span class="inline-formula"><sup>−2</sup></span> (surface RF), thus the strongest documented for a fire event and of comparable magnitude with the strongest volcanic eruptions of the post-Pinatubo era. The surplus of RF at the surface, with respect to TOA, is due to absorption within the plume that has contributed to the generation of ascending smoke vortices in the stratosphere. Highly reflective underlying surfaces, like clouds, can nevertheless swap negative to positive TOA RF, with global average RF as high as <span class="inline-formula">+1.0</span> W m<span class="inline-formula"><sup>−2</sup></span> assuming highly absorbing particles.</p>
first_indexed 2024-04-13T05:41:04Z
format Article
id doaj.art-60535e39fd7043d0a30a6684fb8c25cd
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-13T05:41:04Z
publishDate 2022-07-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-60535e39fd7043d0a30a6684fb8c25cd2022-12-22T03:00:06ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-07-01229299931110.5194/acp-22-9299-2022Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcingP. Sellitto0P. Sellitto1R. Belhadji2C. Kloss3B. Legras4Univ. Paris-Est Créteil and Université de Paris Cité, CNRS, Laboratoire Interuniversitaire des Systèmes Atmosphériques, Institut Pierre Simon Laplace, Créteil, FranceIstituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, ItalyUniv. Paris-Est Créteil and Université de Paris Cité, CNRS, Laboratoire Interuniversitaire des Systèmes Atmosphériques, Institut Pierre Simon Laplace, Créteil, FranceLaboratoire de Physique de l'Environnement et de l'Espace, Orléans, FranceLaboratoire de Météorologie Dynamique, UMR CNRS 8539, École Normale Supérieure, PSL Research University, École Polytechnique, Sorbonne Universités, École des Ponts PARISTECH, Institut Pierre Simon Laplace, Paris, France<p>As a consequence of extreme heat and drought, record-breaking wildfires developed and ravaged south-eastern Australia during the fire season 2019–2020. The fire strength reached its paroxysmal phase at the turn of the year 2019–2020. During this phase, pyrocumulonimbus clouds (pyroCb) developed and injected biomass burning aerosols and gases into the upper troposphere and lower stratosphere (UTLS). The UTLS aerosol layer was massively perturbed by these fires, with aerosol extinction increased by a factor of 3 in the visible spectral range in the Southern Hemisphere, with respect to a background atmosphere, and stratospheric aerosol optical depth reaching values as large as 0.015 in February 2020. Using the best available description of this event by observations, we estimate the radiative forcing (RF) of such perturbations of the Southern Hemispheric aerosol layer. We use offline radiative transfer modelling driven by observed information of the aerosol extinction perturbation and its spectral variability obtained from limb satellite measurements. Based on hypotheses on the absorptivity and the angular scattering properties of the aerosol layer, the regional (at three latitude bands in the Southern Hemisphere) clear-sky TOA (top-of-atmosphere) RF is found varying from small positive values to relatively large negative values (up to <span class="inline-formula">−2.0</span> W m<span class="inline-formula"><sup>−2</sup></span>), and the regional clear-sky surface RF is found to be consistently negative and reaching large values (up to <span class="inline-formula">−4.5</span> W m<span class="inline-formula"><sup>−2</sup></span>). We argue that clear-sky positive values are unlikely for this event, if the ageing/mixing of the biomass burning plume is mirrored by the evolution of its optical properties. Our best estimate for the area-weighted global-equivalent clear-sky RF is <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.35</mn><mo>±</mo><mn mathvariant="normal">0.21</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="0e7f3e36ab8722a4405fca577758aa6a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-9299-2022-ie00001.svg" width="64pt" height="10pt" src="acp-22-9299-2022-ie00001.png"/></svg:svg></span></span> (TOA RF) and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.94</mn><mo>±</mo><mn mathvariant="normal">0.26</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="bd501a800047bfc59def03f942a4842d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-9299-2022-ie00002.svg" width="64pt" height="10pt" src="acp-22-9299-2022-ie00002.png"/></svg:svg></span></span> W m<span class="inline-formula"><sup>−2</sup></span> (surface RF), thus the strongest documented for a fire event and of comparable magnitude with the strongest volcanic eruptions of the post-Pinatubo era. The surplus of RF at the surface, with respect to TOA, is due to absorption within the plume that has contributed to the generation of ascending smoke vortices in the stratosphere. Highly reflective underlying surfaces, like clouds, can nevertheless swap negative to positive TOA RF, with global average RF as high as <span class="inline-formula">+1.0</span> W m<span class="inline-formula"><sup>−2</sup></span> assuming highly absorbing particles.</p>https://acp.copernicus.org/articles/22/9299/2022/acp-22-9299-2022.pdf
spellingShingle P. Sellitto
P. Sellitto
R. Belhadji
C. Kloss
B. Legras
Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcing
Atmospheric Chemistry and Physics
title Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcing
title_full Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcing
title_fullStr Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcing
title_full_unstemmed Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcing
title_short Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcing
title_sort radiative impacts of the australian bushfires 2019 2020 part 1 large scale radiative forcing
url https://acp.copernicus.org/articles/22/9299/2022/acp-22-9299-2022.pdf
work_keys_str_mv AT psellitto radiativeimpactsoftheaustralianbushfires20192020part1largescaleradiativeforcing
AT psellitto radiativeimpactsoftheaustralianbushfires20192020part1largescaleradiativeforcing
AT rbelhadji radiativeimpactsoftheaustralianbushfires20192020part1largescaleradiativeforcing
AT ckloss radiativeimpactsoftheaustralianbushfires20192020part1largescaleradiativeforcing
AT blegras radiativeimpactsoftheaustralianbushfires20192020part1largescaleradiativeforcing