Modeling and Experimental Evaluation of Z-Source Modular Multilevel Converter Using Reduced Inserted Cells Technique

The integration of a Z-source network with a modular multilevel converter (MMC) to provide voltage step-up function is proposed in this paper. The proposed Z-source modular multilevel converter (ZS-MMC) uses a Z-source network connected between the DC source and the DC-link terminals of the MMC. The...

Full description

Bibliographic Details
Main Authors: Fatma A. Khera, Christian Klumpner, Pat Wheeler
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9548095/
Description
Summary:The integration of a Z-source network with a modular multilevel converter (MMC) to provide voltage step-up function is proposed in this paper. The proposed Z-source modular multilevel converter (ZS-MMC) uses a Z-source network connected between the DC source and the DC-link terminals of the MMC. The operation principle of the ZS-MMC is presented utilising the reduced inserted cells (RICs) modulation technique. Compared to the quasi ZS-MMC previously developed by the authors, the ZS-MMC has small fundamental frequency component in the ZS inductor current which requires a smaller inductor size for the Z-source network and is also more efficient. The ZS-MMC is compared to other topologies that can accomplish buck and boost capabilities, such as the quasi Z-source MMC, the quasi Z-source cascaded multilevel converter and the full-bridge based MMC, to validate the viability of the proposed converter. The operation of the ZS-MMC employing the RICs technique is confirmed experimentally.
ISSN:2169-3536