Hydrogen-Rich Water Treatment of Fresh-Cut Kiwifruit with Slightly Acidic Electrolytic Water: Influence on Antioxidant Metabolism and Cell Wall Stability

The synergistic impact of hydrogen-rich water (HRW, 394 ppb) and slightly acidic electrolyzed water (SAEW, pH of 6.25 ± 0.19) on the antioxidant metabolism of fresh-cut kiwifruit during storage was investigated (temperature: (3 ± 1) °C, humidity: 80%–85%). Compared with control group, H+S treatment...

Full description

Bibliographic Details
Main Authors: Yanan Sun, Weiyu Qiu, Xiaoqi Fang, Xiaomei Zhao, Xingfeng Xu, Wenxiang Li
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/12/2/426
Description
Summary:The synergistic impact of hydrogen-rich water (HRW, 394 ppb) and slightly acidic electrolyzed water (SAEW, pH of 6.25 ± 0.19) on the antioxidant metabolism of fresh-cut kiwifruit during storage was investigated (temperature: (3 ± 1) °C, humidity: 80%–85%). Compared with control group, H+S treatment increased the contents of active oxygen-scavenging enzymes (SOD, CAT, POD, and APX) and inhibited the increase of O<sub>2</sub><sup>•−</sup> and H<sub>2</sub>O<sub>2</sub> contents during the storage of fresh-cut kiwifruit. Meanwhile, H+S treatment could reduce the activities of the cell wall-degrading enzymes PG, PME, PL, Cx, and β-Gal, inhibit the formation of soluble pectin, delay the degradation rate of propectin, cellulose, and pseudocellulose, and maintain higher fruit hardness and chewability. The results showed that H+S treatment could enhance free radical scavenging ability and reduce the cell wall metabolism of fresh-cut kiwifruit, maintaining the good texture found in fresh-cut fruit.
ISSN:2304-8158