Diversion Detection in Small-Diameter HDPE Pipes Using Guided Waves and Deep Learning

In this paper, we propose a novel technique for the inspection of high-density polyethylene (HDPE) pipes using ultrasonic sensors, signal processing, and deep neural networks (DNNs). Specifically, we propose a technique that detects whether there is a diversion on a pipe or not. The proposed model t...

Full description

Bibliographic Details
Main Authors: Abdullah Zayat, Mohanad Obeed, Anas Chaaban
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/24/9586
_version_ 1797455375003287552
author Abdullah Zayat
Mohanad Obeed
Anas Chaaban
author_facet Abdullah Zayat
Mohanad Obeed
Anas Chaaban
author_sort Abdullah Zayat
collection DOAJ
description In this paper, we propose a novel technique for the inspection of high-density polyethylene (HDPE) pipes using ultrasonic sensors, signal processing, and deep neural networks (DNNs). Specifically, we propose a technique that detects whether there is a diversion on a pipe or not. The proposed model transmits ultrasound signals through a pipe using a custom-designed array of piezoelectric transmitters and receivers. We propose to use the Zadoff–Chu sequence to modulate the input signals, then utilize its correlation properties to estimate the pipe channel response. The processed signal is then fed to a DNN that extracts the features and decides whether there is a diversion or not. The proposed technique demonstrates an average classification accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90.3</mn><mo>%</mo></mrow></semantics></math></inline-formula> (when one sensor is used) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99.6</mn><mo>%</mo></mrow></semantics></math></inline-formula> (when two sensors are used) on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><mn>3</mn><mn>4</mn></mfrac></semantics></math></inline-formula> inch pipes. The technique can be readily generalized for pipes of different diameters and materials.
first_indexed 2024-03-09T15:53:29Z
format Article
id doaj.art-60a2e710f2314e87be5ceaa8741b7215
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-09T15:53:29Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-60a2e710f2314e87be5ceaa8741b72152023-11-24T17:52:00ZengMDPI AGSensors1424-82202022-12-012224958610.3390/s22249586Diversion Detection in Small-Diameter HDPE Pipes Using Guided Waves and Deep LearningAbdullah Zayat0Mohanad Obeed1Anas Chaaban2School of Engineering, University of British Columbia, 1137 Alumni Ave, Kelowna, BC V1V 1V7, CanadaSchool of Engineering, University of British Columbia, 1137 Alumni Ave, Kelowna, BC V1V 1V7, CanadaSchool of Engineering, University of British Columbia, 1137 Alumni Ave, Kelowna, BC V1V 1V7, CanadaIn this paper, we propose a novel technique for the inspection of high-density polyethylene (HDPE) pipes using ultrasonic sensors, signal processing, and deep neural networks (DNNs). Specifically, we propose a technique that detects whether there is a diversion on a pipe or not. The proposed model transmits ultrasound signals through a pipe using a custom-designed array of piezoelectric transmitters and receivers. We propose to use the Zadoff–Chu sequence to modulate the input signals, then utilize its correlation properties to estimate the pipe channel response. The processed signal is then fed to a DNN that extracts the features and decides whether there is a diversion or not. The proposed technique demonstrates an average classification accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90.3</mn><mo>%</mo></mrow></semantics></math></inline-formula> (when one sensor is used) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99.6</mn><mo>%</mo></mrow></semantics></math></inline-formula> (when two sensors are used) on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><mn>3</mn><mn>4</mn></mfrac></semantics></math></inline-formula> inch pipes. The technique can be readily generalized for pipes of different diameters and materials.https://www.mdpi.com/1424-8220/22/24/9586high-density polyethylene (HDPE)ultrasonic-guided waves (UGWs)Zadoff–Chu sequencedeep neural network (DNN)convolutional neural network (CNN)recurrent neural network (RNN)
spellingShingle Abdullah Zayat
Mohanad Obeed
Anas Chaaban
Diversion Detection in Small-Diameter HDPE Pipes Using Guided Waves and Deep Learning
Sensors
high-density polyethylene (HDPE)
ultrasonic-guided waves (UGWs)
Zadoff–Chu sequence
deep neural network (DNN)
convolutional neural network (CNN)
recurrent neural network (RNN)
title Diversion Detection in Small-Diameter HDPE Pipes Using Guided Waves and Deep Learning
title_full Diversion Detection in Small-Diameter HDPE Pipes Using Guided Waves and Deep Learning
title_fullStr Diversion Detection in Small-Diameter HDPE Pipes Using Guided Waves and Deep Learning
title_full_unstemmed Diversion Detection in Small-Diameter HDPE Pipes Using Guided Waves and Deep Learning
title_short Diversion Detection in Small-Diameter HDPE Pipes Using Guided Waves and Deep Learning
title_sort diversion detection in small diameter hdpe pipes using guided waves and deep learning
topic high-density polyethylene (HDPE)
ultrasonic-guided waves (UGWs)
Zadoff–Chu sequence
deep neural network (DNN)
convolutional neural network (CNN)
recurrent neural network (RNN)
url https://www.mdpi.com/1424-8220/22/24/9586
work_keys_str_mv AT abdullahzayat diversiondetectioninsmalldiameterhdpepipesusingguidedwavesanddeeplearning
AT mohanadobeed diversiondetectioninsmalldiameterhdpepipesusingguidedwavesanddeeplearning
AT anaschaaban diversiondetectioninsmalldiameterhdpepipesusingguidedwavesanddeeplearning