Summary: | The highly conserved and dynamically reversible N6-methyladenine (m6A) modification has emerged as a critical gene expression regulator by affecting RNA splicing, translation efficiency, and stability at the post-transcriptional level, which has been established to be involved in various physiological and pathological processes, including glycolipid metabolism and the development of glycolipid metabolic disease (GLMD). Hence, accumulating studies have focused on the effects and regulatory mechanisms of m6A modification on glucose metabolism, lipid metabolism, and GLMD. This review summarizes the underlying mechanism of how m6A modification regulates glucose and lipid metabolism-related enzymes, transcription factors, and signaling pathways and the advances of m6A regulatory mechanisms in GLMD in order to deepen the understanding of the association of m6A modification with glycolipid metabolism and GLMD.
|