Using Deep-Learning-Based Artificial Intelligence Technique to Automatically Evaluate the Collateral Status of Multiphase CTA in Acute Ischemic Stroke
Background: Collateral status is an important predictor for the outcome of acute ischemic stroke with large vessel occlusion. Multiphase computed-tomography angiography (mCTA) is useful to evaluate the collateral status, but visual evaluation of this examination is time-consuming. This study aims to...
Päätekijät: | Chun-Chao Huang, Hsin-Fan Chiang, Cheng-Chih Hsieh, Chao-Liang Chou, Zong-Yi Jhou, Ting-Yi Hou, Jin-Siang Shaw |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
MDPI AG
2023-03-01
|
Sarja: | Tomography |
Aiheet: | |
Linkit: | https://www.mdpi.com/2379-139X/9/2/52 |
Samankaltaisia teoksia
-
Merging Multiphase CTA Images and Training Them Simultaneously with a Deep Learning Algorithm Could Improve the Efficacy of AI Models for Lateral Circulation Assessment in Ischemic Stroke
Tekijä: Jingjie Wang, et al.
Julkaistu: (2022-06-01) -
Siamese model for collateral score prediction from computed tomography angiography images in acute ischemic stroke
Tekijä: Valerio Fortunati, et al.
Julkaistu: (2024-01-01) -
Segmentation of Portal Vein in Multiphase CTA Image Based on Unsupervised Domain Transfer and Pseudo Label
Tekijä: Genshen Song, et al.
Julkaistu: (2023-07-01) -
ColorViz, a New and Rapid Tool for Assessing Collateral Circulation during Stroke
Tekijä: Tommaso Verdolotti, et al.
Julkaistu: (2020-11-01) -
Comparative Evaluation of Imaging Modalities for Eligibility in Endovascular Treatment of Delayed Onset Acute Anterior Circulation Ischemic Stroke in Siriraj Hospital: A Retrospective Analysis
Tekijä: Rungsima Chudapongse, et al.
Julkaistu: (2024-09-01)