Time-ResNeXt for epilepsy recognition based on EEG signals in wireless networks
Abstract To automatically detect dynamic EEG signals to reduce the time cost of epilepsy diagnosis. In the signal recognition of electroencephalogram (EEG) of epilepsy, traditional machine learning and statistical methods require manual feature labeling engineering in order to show excellent results...
Үндсэн зохиолчид: | Shaoqiang Wang, Shudong Wang, Song Zhang, Yifan Wang |
---|---|
Формат: | Өгүүллэг |
Хэл сонгох: | English |
Хэвлэсэн: |
SpringerOpen
2020-10-01
|
Цуврал: | EURASIP Journal on Wireless Communications and Networking |
Нөхцлүүд: | |
Онлайн хандалт: | http://link.springer.com/article/10.1186/s13638-020-01810-5 |
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
SC-ResNeXt: A Regression Prediction Model for Nitrogen Content in Sugarcane Leaves
-н: Zihao Lu, зэрэг
Хэвлэсэн: (2025-01-01) -
Art appreciation model design based on improved PageRank and ECA-ResNeXt50 algorithm
-н: Hang Yang, зэрэг
Хэвлэсэн: (2023-12-01) -
A Method for Speaker Recognition Based on the ResNeXt Network Under Challenging Acoustic Conditions
-н: Dongbo Liu, зэрэг
Хэвлэсэн: (2023-01-01) -
G2-ResNeXt: A Novel Model for ECG Signal Classification
-н: Shengnan Hao, зэрэг
Хэвлэсэн: (2023-01-01) -
Research on the Classification of Sun-Dried Wild Ginseng Based on an Improved ResNeXt50 Model
-н: Dongming Li, зэрэг
Хэвлэсэн: (2024-11-01)