Time-ResNeXt for epilepsy recognition based on EEG signals in wireless networks
Abstract To automatically detect dynamic EEG signals to reduce the time cost of epilepsy diagnosis. In the signal recognition of electroencephalogram (EEG) of epilepsy, traditional machine learning and statistical methods require manual feature labeling engineering in order to show excellent results...
Hlavní autoři: | Shaoqiang Wang, Shudong Wang, Song Zhang, Yifan Wang |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
SpringerOpen
2020-10-01
|
Edice: | EURASIP Journal on Wireless Communications and Networking |
Témata: | |
On-line přístup: | http://link.springer.com/article/10.1186/s13638-020-01810-5 |
Podobné jednotky
-
SC-ResNeXt: A Regression Prediction Model for Nitrogen Content in Sugarcane Leaves
Autor: Zihao Lu, a další
Vydáno: (2025-01-01) -
Art appreciation model design based on improved PageRank and ECA-ResNeXt50 algorithm
Autor: Hang Yang, a další
Vydáno: (2023-12-01) -
A Method for Speaker Recognition Based on the ResNeXt Network Under Challenging Acoustic Conditions
Autor: Dongbo Liu, a další
Vydáno: (2023-01-01) -
G2-ResNeXt: A Novel Model for ECG Signal Classification
Autor: Shengnan Hao, a další
Vydáno: (2023-01-01) -
Research on the Classification of Sun-Dried Wild Ginseng Based on an Improved ResNeXt50 Model
Autor: Dongming Li, a další
Vydáno: (2024-11-01)