Time-ResNeXt for epilepsy recognition based on EEG signals in wireless networks
Abstract To automatically detect dynamic EEG signals to reduce the time cost of epilepsy diagnosis. In the signal recognition of electroencephalogram (EEG) of epilepsy, traditional machine learning and statistical methods require manual feature labeling engineering in order to show excellent results...
Main Authors: | Shaoqiang Wang, Shudong Wang, Song Zhang, Yifan Wang |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
SpringerOpen
2020-10-01
|
סדרה: | EURASIP Journal on Wireless Communications and Networking |
נושאים: | |
גישה מקוונת: | http://link.springer.com/article/10.1186/s13638-020-01810-5 |
פריטים דומים
-
SC-ResNeXt: A Regression Prediction Model for Nitrogen Content in Sugarcane Leaves
מאת: Zihao Lu, et al.
יצא לאור: (2025-01-01) -
Art appreciation model design based on improved PageRank and ECA-ResNeXt50 algorithm
מאת: Hang Yang, et al.
יצא לאור: (2023-12-01) -
A Method for Speaker Recognition Based on the ResNeXt Network Under Challenging Acoustic Conditions
מאת: Dongbo Liu, et al.
יצא לאור: (2023-01-01) -
G2-ResNeXt: A Novel Model for ECG Signal Classification
מאת: Shengnan Hao, et al.
יצא לאור: (2023-01-01) -
Research on the Classification of Sun-Dried Wild Ginseng Based on an Improved ResNeXt50 Model
מאת: Dongming Li, et al.
יצא לאור: (2024-11-01)