Characterization of Three Surges of the Kyagar Glacier, Karakoram

Glaciers experience periodic variations in flow velocity called surges, each of which influences the glacier’s characteristics and the occurrence of downstream disasters (e.g., ice-dammed lake outburst floods). The Karakoram region contains many surging glaciers, yet there are few comprehensive stud...

Full description

Bibliographic Details
Main Authors: Zhen Zhang, Jinbiao Zhao, Shiyin Liu, Qibing Zhang, Zongli Jiang, Yangyang Xu, Haoran Su
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/8/2113
Description
Summary:Glaciers experience periodic variations in flow velocity called surges, each of which influences the glacier’s characteristics and the occurrence of downstream disasters (e.g., ice-dammed lake outburst floods). The Karakoram region contains many surging glaciers, yet there are few comprehensive studies of multiple surge cycles. In this work, Landsat, topographic map, Shuttle Radar Topography Mission (SRTM), TerraSAR-X/TanDEM-X, ITS_LIVE, and Sentinel-1 glacier velocity data were used to systematically analyze the characteristics of Kyagar Glacier since the 1970s. Three surging events were identified, with active phases in 1975–1978, 1995–1997, and 2014–2016. The timing of these surges was similar, with a cycle of 19–20 years, an active phase of 3–4 years, and a quiescent phase of 16–17 years. During the quiescent phase, a large amount of ice accumulates in the lower part of the accumulation zone, and the terminal of the tongue thins significantly. According to the most recent surge event (2014–2016), glacier flow accelerated suddenly in the active phase and reached a maximum velocity of 2 ± 0.08 m d<sup>−1</sup>. Then, the glacier terminal thickened sharply, the reservoir zone thinned by 12 ± 0.2 m, and the terminal receiving zone thickened by 28 ± 0.2 m. The glacier may have entered a quiescent phase after July 2016. The glacier surge causes a large amount of material to transfer from upstream to downstream, forming an ice dam and creating conditions for a glacial lake outburst flood (GLOF). At the termination of the active phase, the subglacial drainage channel became effective, triggering the GLOF. For a period of the quiescent phase, the glacier ablation intensifies and the GLOF repeats constantly. One surge caused 7–8 GLOFs, and then a continuous reduction in the ice dam elevation. Eventually, the ice dam disappeared, and the GLOF no longer continued before the next glacier-surging event.
ISSN:2072-4292