Goursat problem for the Yang-Mills-Vlasov system in temporal gauge

This article studies the characteristic Cauchy problem for the Yang-Mills-Vlasov (YMV) system in temporal gauge, where the initial data are specified on two intersecting smooth characteristic hypersurfaces of Minkowski spacetime $(mathbb{R}^{4},eta )$. Under a $mathcal{C}^{infty }$ hypothesis o...

Full description

Bibliographic Details
Main Authors: Marcel Dossa, Marcel Nanga
Format: Article
Language:English
Published: Texas State University 2011-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2011/163/abstr.html
_version_ 1818564424678506496
author Marcel Dossa
Marcel Nanga
author_facet Marcel Dossa
Marcel Nanga
author_sort Marcel Dossa
collection DOAJ
description This article studies the characteristic Cauchy problem for the Yang-Mills-Vlasov (YMV) system in temporal gauge, where the initial data are specified on two intersecting smooth characteristic hypersurfaces of Minkowski spacetime $(mathbb{R}^{4},eta )$. Under a $mathcal{C}^{infty }$ hypothesis on the data, we solve the initial constraint problem and the evolution problem. Local in time existence and uniqueness results are established thanks to a suitable combination of the method of characteristics, Leray's Theory of hyperbolic systems and techniques developed by Choquet-Bruhat for ordinary spatial Cauchy problems related to (YMV) systems.
first_indexed 2024-12-14T01:28:44Z
format Article
id doaj.art-60c9961cac124b61bb3f45dd91c94f52
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-14T01:28:44Z
publishDate 2011-12-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-60c9961cac124b61bb3f45dd91c94f522022-12-21T23:22:06ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912011-12-012011163,122Goursat problem for the Yang-Mills-Vlasov system in temporal gaugeMarcel DossaMarcel NangaThis article studies the characteristic Cauchy problem for the Yang-Mills-Vlasov (YMV) system in temporal gauge, where the initial data are specified on two intersecting smooth characteristic hypersurfaces of Minkowski spacetime $(mathbb{R}^{4},eta )$. Under a $mathcal{C}^{infty }$ hypothesis on the data, we solve the initial constraint problem and the evolution problem. Local in time existence and uniqueness results are established thanks to a suitable combination of the method of characteristics, Leray's Theory of hyperbolic systems and techniques developed by Choquet-Bruhat for ordinary spatial Cauchy problems related to (YMV) systems.http://ejde.math.txstate.edu/Volumes/2011/163/abstr.htmlGoursat problemcharacteristic initial hypersurfacesYang-Mills-Vlasov systemtemporal gaugeinitialconstraintsevolution problem
spellingShingle Marcel Dossa
Marcel Nanga
Goursat problem for the Yang-Mills-Vlasov system in temporal gauge
Electronic Journal of Differential Equations
Goursat problem
characteristic initial hypersurfaces
Yang-Mills-Vlasov system
temporal gauge
initial
constraints
evolution problem
title Goursat problem for the Yang-Mills-Vlasov system in temporal gauge
title_full Goursat problem for the Yang-Mills-Vlasov system in temporal gauge
title_fullStr Goursat problem for the Yang-Mills-Vlasov system in temporal gauge
title_full_unstemmed Goursat problem for the Yang-Mills-Vlasov system in temporal gauge
title_short Goursat problem for the Yang-Mills-Vlasov system in temporal gauge
title_sort goursat problem for the yang mills vlasov system in temporal gauge
topic Goursat problem
characteristic initial hypersurfaces
Yang-Mills-Vlasov system
temporal gauge
initial
constraints
evolution problem
url http://ejde.math.txstate.edu/Volumes/2011/163/abstr.html
work_keys_str_mv AT marceldossa goursatproblemfortheyangmillsvlasovsystemintemporalgauge
AT marcelnanga goursatproblemfortheyangmillsvlasovsystemintemporalgauge