Summary: | The goal of the research is to analyze the structure and properties of the coating SnO2–In2O2–Ag–N formed on copper by a complex method. The method of coating formation combined the electroerosion spraying, irradiation by pulsed electron beam and subsequent nitriding in plasma of a gas discharge of a low pressure. It is shown that the thickness of the coating amounts to ≈100 μm. The wear resistance of a copper sample with the deposited coating is ≈ 2.8 times higher than that of copper without the coating. The friction coefficient of samples with the coating (μ = 0.479) is ≈ 1.4 times less than that of copper without the coating (μ = 0.679). It is established that the coating hardness increases as the substrate is approached and reaches its maximum value of ≈1400 MPa (substrate hardness is 1270 MPa). By means of micro-X-ray- spectral analysis it is detected that the main chemical element of the coating is silver, with copper, tin, indium, oxygen and nitrogen being present in a much smaller quantity. By the methods of X-ray phase analysis it is revealed that the main phases of the coating are copper-and silver base solid solutions. Tests for the electroerosion resistance showed that the coatings meet the requirements of standards for electromagnet starters with the category of application AC-3 of direct action.
|