Physical–Chemical Properties, Droplet Size, and Efficacy of Dicamba Plus Glyphosate Tank Mixture Influenced by Adjuvants

Dicamba plus glyphosate tank mixture have been largely adopted for postemergence weed control after the development of dicamba-tolerant crops. Ammonium sulfate is commonly used as water conditioner (WC) to increase glyphosate efficacy, but its use is restricted for dicamba herbicides. The use of non...

Full description

Bibliographic Details
Main Authors: Estefania Gomiero Polli, Guilherme Sousa Alves, Joao Victor de Oliveira, Greg Robert Kruger
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/11/7/1321
Description
Summary:Dicamba plus glyphosate tank mixture have been largely adopted for postemergence weed control after the development of dicamba-tolerant crops. Ammonium sulfate is commonly used as water conditioner (WC) to increase glyphosate efficacy, but its use is restricted for dicamba herbicides. The use of non-AMS water conditioner and other adjuvants could be a way to optimize efficacy of this tank mixture while mitigating herbicide off-target movement. The objective of this study was to determine the physical–chemical properties and droplet size distribution of dicamba and glyphosate solutions with and without non-AMS WC alone and tank mixed with other adjuvants and evaluate the response of weed species to these solutions under greenhouse and field conditions. The adjuvants mostly increased density and viscosity and decreased contact angle and surface tension of herbicide solutions. In presence of WC, except for the adjuvants containing drift reducing agent, Dv<sub>0.5</sub> decreased with the addition of adjuvants. Under greenhouse conditions, biomass reduction increased up to 47 and 33 percentage points for velvetleaf and c. waterhemp when adjuvants were added to solutions without WC, respectively. No increase in control of horseweed and Palmer amaranth was observed with the use of adjuvants under field conditions.
ISSN:2073-4395