Max–Min Fairness Optimization for D2D Communications Coexisting with Cellular Networks
This paper considers a system consisting of a nonorthogonal multiple access (NOMA)-based device-to-device (D2D) communication system within a cellular network, in which the time and frequency resources are shared by everyone. In particular, D2D groups that constitute different pairs are assigned to...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Electronics |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-9292/9/9/1422 |
Summary: | This paper considers a system consisting of a nonorthogonal multiple access (NOMA)-based device-to-device (D2D) communication system within a cellular network, in which the time and frequency resources are shared by everyone. In particular, D2D groups that constitute different pairs are assigned to the subchannels that the cellular users occupy. A max–min fairness optimization problem with power budget constraints is formulated and solved in this paper to reduce the mutual interference between the cellular users and D2D devices that substantially impacts that with the worst channel condition. For a low computational complexity solution, we propose the use of the bisection method together with the solution of a system of linear equalities. The proposed algorithm can provide uniformly good service to all of the cellular users and D2D devices in the coverage area by utilizing the minimal total transmit power. The simulation results indicate the effectiveness of the proposed algorithm in the improvement of the spectral efficiency of the worst user under the different widely used subchannel assignments and pairing techniques. |
---|---|
ISSN: | 2079-9292 |