mitoBKCa is functionally expressed in murine and human breast cancer cells and potentially contributes to metabolic reprogramming

Alterations in the function of K+ channels such as the voltage- and Ca2+-activated K+ channel of large conductance (BKCa) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a...

Full description

Bibliographic Details
Main Authors: Helmut Bischof, Selina Maier, Piotr Koprowski, Bogusz Kulawiak, Sandra Burgstaller, Joanna Jasińska, Kristian Serafimov, Monika Zochowska, Dominic Gross, Werner Schroth, Lucas Matt, David Arturo Juarez Lopez, Ying Zhang, Irina Bonzheim, Florian A Büttner, Falko Fend, Matthias Schwab, Andreas L Birkenfeld, Roland Malli, Michael Lämmerhofer, Piotr Bednarczyk, Adam Szewczyk, Robert Lukowski
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2024-05-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/92511