Geothermobarometry of Fe-Ti hosted gabbroid rocks in the Dar Gaz district (Kahnouj Ophiolitic Complex)

Introduction The Kahnouj Fe-Ti ore district is located 25 km southeast of Kahnouj city associated with the large gabbro intrusion of the Kahnouj ophiolitic complex. This ophiolite is one of the largest ophiolite assemblages of Iran (SE Iran), and part of neo-tethyan ophiolites (Kananian et al., 200...

Full description

Bibliographic Details
Main Authors: Majid Ghasemi Siani, Hamed Ebrahimi Fard
Format: Article
Language:fas
Published: Ferdowsi University of Mashhad 2022-06-01
Series:Journal of Economic Geology
Subjects:
Online Access:https://econg.um.ac.ir/article_41518.html?lang=en
_version_ 1818156524342607872
author Majid Ghasemi Siani
Hamed Ebrahimi Fard
author_facet Majid Ghasemi Siani
Hamed Ebrahimi Fard
author_sort Majid Ghasemi Siani
collection DOAJ
description Introduction The Kahnouj Fe-Ti ore district is located 25 km southeast of Kahnouj city associated with the large gabbro intrusion of the Kahnouj ophiolitic complex. This ophiolite is one of the largest ophiolite assemblages of Iran (SE Iran), and part of neo-tethyan ophiolites (Kananian et al., 2001; Ghasemi Siani et al., 2021b). The Dar Gaz district is located in the middle part of Kahnouj ophiolitic complex and it is classified as the main ortomagmatic Fe-Ti ore mineralization. Although the geothermobarometric of iron-titanium oxide minerals in the Dar Gaz district has been studied by Karimi Shahraki et al. (2019), the geothermometry of silicate minerals (especially ferromagnesian) in the Dar Gaz gabrroic rocks has not been performed. Therefore, the main aim of this study is to determine the crystallization temperature and replacement of gabbroic rocks hosting Fe-Ti mineralization of the Dar Gaz district, using geothermometry of ferromagnesian silicate mineral. Material and methods A total of 100 thin-polish sections from different parts of the mining area were prepared and studied at the Iran Mineral Processing Research Center (IMPRC) and the Kharazmi University of Tehran with a Zeiss Axioplan 2 microscope. In order to achieve the temperature conditions of gabbroic rocks formation, 64 points (20 points of olivine, 13 points of clinopyroxene, 3 points of orthopyroxene, 14 points of plagioclase and 14 points of amphibole) from ferrogabbro to coarse-grained pyroxene-hornblende gabbro, 42 points (11 points of olivine, 10 points of clinopyroxene, 1 point of orthopyroxene, 8 points of plagioclase and 12 points of amphibole) from pyroxene-hornblende to fine-grained olivine gabbro, 30 points (12 points of clinopyroxene, 10 points of plagioclase, 8 points of amphibole) from fine-grained hornblende gabbro and 20 points (3 points of clinopyroxene, 11 points of plagioclase and 5 points of amphibole) from the diabasic dike of the Dar Gaz district were analyzed using CAMECA SX 100 electron microscopy (EPMA) with 20 kV and 20 nA conditions in the IMPRC. Discussion The mafic rocks of the Dar Gaz district include ferrogabbro to coarse-grained pyroxene-hornblende gabbro, fine-grained pyroxene-hornblende gabbro, hornblende gabbro and diabasic dikes. Ferrogabbro to coarse-grained pyroxene-hornblende gabbro is one of the most important host rocks for Fe-Ti mineralization in the district. According to the thermo-barometers, the formation temperature and pressure of gabbroic rocks in the Dar Gaz district are in the range of 750 to 1258°C and a pressure of 2.5 and 6 kbars (clinopyroxene and amphibole barometers), and dibasic dikes are in the range of 700 to 1145°C and a pressure of 2.5 and 6 kbars were obtained. The highest crystallization temperature related to fine-grained pyroxen-hornblende gabbro unit (754 to 1258 °C) is the base of the sequence. The ascending of asthenosphere in the back-arc tectonic settings are from a magmatic chamber with a depth of about 15.34 to 21.20 km, and a pressure of about 4 to 8 kbars upwards. The average geometric results of pyroxene-ilmenite mineral pair geothermometry and pyroxene geothermometer of these rocks, their equilibrium temperature was determined between 901 to 1228°C, which is close to the magmatic temperatures. With comparison of temperature (700 to 1258°C), pressure (4 to 8 kbars) and oxygen fugacity (-19.25 to -25.25 bars) obtained for gabbroid rocks hosting Fe-Ti oxide mineralization with the temperatures obtained from ilmenite and titanomagnetite by Karimi Shahraki et al. (2019), it can be concluded that oxide mineralization is classified as orthomagmatic and occurs during the replacement, cooling and fraction of basic magma and formation of gabbroid intrusion associated with fractional crystallization. Conclusion Thermometry of pyroxenes at 2.5 kbars pressure indicates a temperature of 750 to 1258 °C for gabbroid bodies and 700 to 1145 °C for diabaic dikes. Thermometry of plagioclase and hornblende-plagioclase at 6 kbars pressure for coarse-grained ferrogabbro, fine-grained pyroxene-hornblende gabbro, hornblende gabbro and diabasic dikes are 868, 884, 776 and 784 °C, respectively. Amphibole thermometers at 6 kbar pressure for coarse-grained ferrogabbro, fine-grained pyroxene-hornblende gabbro, hornblende gabbro and diabasic dikes are 911, 948, 937 and 946°C, respectively. Comparison of temperature, pressure and high oxygen fugacity values obtained for gabbroic rocks and ilmenite and titanium magnetite ores of the Dar Gaz district, indicating oxidation conditions associated with fractional crystallization is the main factor for control of orthomagmatic mineralization in the back-arc environment.
first_indexed 2024-12-11T14:59:40Z
format Article
id doaj.art-612d49e28c6248c2b9cff2d8ab4034e4
institution Directory Open Access Journal
issn 2008-7306
language fas
last_indexed 2024-12-11T14:59:40Z
publishDate 2022-06-01
publisher Ferdowsi University of Mashhad
record_format Article
series Journal of Economic Geology
spelling doaj.art-612d49e28c6248c2b9cff2d8ab4034e42022-12-22T01:01:12ZfasFerdowsi University of MashhadJournal of Economic Geology2008-73062022-06-0114118522210.22067/ECONG.2021.69934.1016Geothermobarometry of Fe-Ti hosted gabbroid rocks in the Dar Gaz district (Kahnouj Ophiolitic Complex)Majid Ghasemi Siani0Hamed Ebrahimi Fard1Assistant Professor, Department of Geochemistry, Faculty of Earth Sciences, Kharazmi University, Tehran, IranM.Sc., Department of Geochemistry, Faculty of Earth Sciences, Kharazmi University, Tehran, IranIntroduction The Kahnouj Fe-Ti ore district is located 25 km southeast of Kahnouj city associated with the large gabbro intrusion of the Kahnouj ophiolitic complex. This ophiolite is one of the largest ophiolite assemblages of Iran (SE Iran), and part of neo-tethyan ophiolites (Kananian et al., 2001; Ghasemi Siani et al., 2021b). The Dar Gaz district is located in the middle part of Kahnouj ophiolitic complex and it is classified as the main ortomagmatic Fe-Ti ore mineralization. Although the geothermobarometric of iron-titanium oxide minerals in the Dar Gaz district has been studied by Karimi Shahraki et al. (2019), the geothermometry of silicate minerals (especially ferromagnesian) in the Dar Gaz gabrroic rocks has not been performed. Therefore, the main aim of this study is to determine the crystallization temperature and replacement of gabbroic rocks hosting Fe-Ti mineralization of the Dar Gaz district, using geothermometry of ferromagnesian silicate mineral. Material and methods A total of 100 thin-polish sections from different parts of the mining area were prepared and studied at the Iran Mineral Processing Research Center (IMPRC) and the Kharazmi University of Tehran with a Zeiss Axioplan 2 microscope. In order to achieve the temperature conditions of gabbroic rocks formation, 64 points (20 points of olivine, 13 points of clinopyroxene, 3 points of orthopyroxene, 14 points of plagioclase and 14 points of amphibole) from ferrogabbro to coarse-grained pyroxene-hornblende gabbro, 42 points (11 points of olivine, 10 points of clinopyroxene, 1 point of orthopyroxene, 8 points of plagioclase and 12 points of amphibole) from pyroxene-hornblende to fine-grained olivine gabbro, 30 points (12 points of clinopyroxene, 10 points of plagioclase, 8 points of amphibole) from fine-grained hornblende gabbro and 20 points (3 points of clinopyroxene, 11 points of plagioclase and 5 points of amphibole) from the diabasic dike of the Dar Gaz district were analyzed using CAMECA SX 100 electron microscopy (EPMA) with 20 kV and 20 nA conditions in the IMPRC. Discussion The mafic rocks of the Dar Gaz district include ferrogabbro to coarse-grained pyroxene-hornblende gabbro, fine-grained pyroxene-hornblende gabbro, hornblende gabbro and diabasic dikes. Ferrogabbro to coarse-grained pyroxene-hornblende gabbro is one of the most important host rocks for Fe-Ti mineralization in the district. According to the thermo-barometers, the formation temperature and pressure of gabbroic rocks in the Dar Gaz district are in the range of 750 to 1258°C and a pressure of 2.5 and 6 kbars (clinopyroxene and amphibole barometers), and dibasic dikes are in the range of 700 to 1145°C and a pressure of 2.5 and 6 kbars were obtained. The highest crystallization temperature related to fine-grained pyroxen-hornblende gabbro unit (754 to 1258 °C) is the base of the sequence. The ascending of asthenosphere in the back-arc tectonic settings are from a magmatic chamber with a depth of about 15.34 to 21.20 km, and a pressure of about 4 to 8 kbars upwards. The average geometric results of pyroxene-ilmenite mineral pair geothermometry and pyroxene geothermometer of these rocks, their equilibrium temperature was determined between 901 to 1228°C, which is close to the magmatic temperatures. With comparison of temperature (700 to 1258°C), pressure (4 to 8 kbars) and oxygen fugacity (-19.25 to -25.25 bars) obtained for gabbroid rocks hosting Fe-Ti oxide mineralization with the temperatures obtained from ilmenite and titanomagnetite by Karimi Shahraki et al. (2019), it can be concluded that oxide mineralization is classified as orthomagmatic and occurs during the replacement, cooling and fraction of basic magma and formation of gabbroid intrusion associated with fractional crystallization. Conclusion Thermometry of pyroxenes at 2.5 kbars pressure indicates a temperature of 750 to 1258 °C for gabbroid bodies and 700 to 1145 °C for diabaic dikes. Thermometry of plagioclase and hornblende-plagioclase at 6 kbars pressure for coarse-grained ferrogabbro, fine-grained pyroxene-hornblende gabbro, hornblende gabbro and diabasic dikes are 868, 884, 776 and 784 °C, respectively. Amphibole thermometers at 6 kbar pressure for coarse-grained ferrogabbro, fine-grained pyroxene-hornblende gabbro, hornblende gabbro and diabasic dikes are 911, 948, 937 and 946°C, respectively. Comparison of temperature, pressure and high oxygen fugacity values obtained for gabbroic rocks and ilmenite and titanium magnetite ores of the Dar Gaz district, indicating oxidation conditions associated with fractional crystallization is the main factor for control of orthomagmatic mineralization in the back-arc environment.https://econg.um.ac.ir/article_41518.html?lang=enmineral chemistrygeothermobarometrygabbroid rocksfe-ti oxidedar gazkahnouj ophiolitic complex
spellingShingle Majid Ghasemi Siani
Hamed Ebrahimi Fard
Geothermobarometry of Fe-Ti hosted gabbroid rocks in the Dar Gaz district (Kahnouj Ophiolitic Complex)
Journal of Economic Geology
mineral chemistry
geothermobarometry
gabbroid rocks
fe-ti oxide
dar gaz
kahnouj ophiolitic complex
title Geothermobarometry of Fe-Ti hosted gabbroid rocks in the Dar Gaz district (Kahnouj Ophiolitic Complex)
title_full Geothermobarometry of Fe-Ti hosted gabbroid rocks in the Dar Gaz district (Kahnouj Ophiolitic Complex)
title_fullStr Geothermobarometry of Fe-Ti hosted gabbroid rocks in the Dar Gaz district (Kahnouj Ophiolitic Complex)
title_full_unstemmed Geothermobarometry of Fe-Ti hosted gabbroid rocks in the Dar Gaz district (Kahnouj Ophiolitic Complex)
title_short Geothermobarometry of Fe-Ti hosted gabbroid rocks in the Dar Gaz district (Kahnouj Ophiolitic Complex)
title_sort geothermobarometry of fe ti hosted gabbroid rocks in the dar gaz district kahnouj ophiolitic complex
topic mineral chemistry
geothermobarometry
gabbroid rocks
fe-ti oxide
dar gaz
kahnouj ophiolitic complex
url https://econg.um.ac.ir/article_41518.html?lang=en
work_keys_str_mv AT majidghasemisiani geothermobarometryoffetihostedgabbroidrocksinthedargazdistrictkahnoujophioliticcomplex
AT hamedebrahimifard geothermobarometryoffetihostedgabbroidrocksinthedargazdistrictkahnoujophioliticcomplex