Simulation and Optimization of Hemispherical Resonator’s Equivalent Bottom Angle for Frequency-Splitting Suppression

As an inertial sensor with excellent performance, the hemispherical resonator gyro is widely used in aerospace, weapon navigation and other fields due to its advantages of high precision, high reliability, and long life. Due to the uneven distributions of material properties and mass of the resonato...

Full description

Bibliographic Details
Main Authors: Zhiyong Gao, Shang Wang, Zhi Wang, Xukai Ding
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/14/9/1686
_version_ 1797578802682920960
author Zhiyong Gao
Shang Wang
Zhi Wang
Xukai Ding
author_facet Zhiyong Gao
Shang Wang
Zhi Wang
Xukai Ding
author_sort Zhiyong Gao
collection DOAJ
description As an inertial sensor with excellent performance, the hemispherical resonator gyro is widely used in aerospace, weapon navigation and other fields due to its advantages of high precision, high reliability, and long life. Due to the uneven distributions of material properties and mass of the resonator in the circumferential direction, the frequencies of the two 4-antinodes vibration modes (operational mode) of resonator in different directions are different, which is called frequency splitting. Frequency splitting is the main error source affecting the accuracy of the hemispherical resonator gyro and must be suppressed. The frequency splitting is related to the structure of the resonator. For the planar-electrode-type hemispherical resonator gyro, in order to suppress the frequency splitting from the structure, improve the accuracy of the hemispherical resonator gyro, and determine and optimize the equivalent bottom angle parameters of the hemispherical resonator, this paper starts from the thin shell theory, and the 4-antinodes vibration mode and waveform precession model of the hemispherical resonator are researched. The effect of the equivalent bottom angle on the 4-antinodes vibration mode frequency value under different boundary conditions is theoretically analyzed and simulated. The simulation results show that the equivalent bottom angle affects the 4-antinodes vibration mode of the hemispherical resonator through radial constraints. The hemispherical resonator with mid-surface radius <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mo>=</mo><mn>15</mn><mrow><mo> </mo><mi>mm</mi></mrow></mrow></semantics></math></inline-formula> and shell thickness <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi><mo>=</mo><mn>1</mn><mrow><mo> </mo><mi>mm</mi></mrow></mrow></semantics></math></inline-formula> is the optimization object, and the stem diameter <i>D</i> and fillet radius <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>1</mn></msub></semantics></math></inline-formula> are experimental factors, with the 4-antinodes vibration mode frequency value and mass sensitivity factor as the response indexes. The central composite design is carried out to optimize the equivalent bottom angle parameters. The optimized structural parameters are: stem diameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mo>=</mo><mn>7</mn><mrow><mo> </mo><mi>mm</mi></mrow></mrow></semantics></math></inline-formula>, fillet radii <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn><mrow><mo> </mo><mi>mm</mi></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>2</mn></msub><mo>=</mo><mn>0.8</mn><mrow><mo> </mo><mi>mm</mi></mrow></mrow></semantics></math></inline-formula>. The simulation results show that the 4-antinodes vibration mode frequency value is 5441.761 Hz, and the mass sensitivity factor is 3.91 Hz/mg, which meets the working and excitation requirements wonderfully. This research will provide guidance and reference for improving the accuracy of the hemispherical resonator gyro.
first_indexed 2024-03-10T22:26:59Z
format Article
id doaj.art-6133487173b649deaa67172e7f20d1f3
institution Directory Open Access Journal
issn 2072-666X
language English
last_indexed 2024-03-10T22:26:59Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Micromachines
spelling doaj.art-6133487173b649deaa67172e7f20d1f32023-11-19T11:59:13ZengMDPI AGMicromachines2072-666X2023-08-01149168610.3390/mi14091686Simulation and Optimization of Hemispherical Resonator’s Equivalent Bottom Angle for Frequency-Splitting SuppressionZhiyong Gao0Shang Wang1Zhi Wang2Xukai Ding3School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310012, ChinaChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, ChinaSchool of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310012, ChinaSchool of Instrument Science and Engineering, Southeast University, Nanjiing 210096, ChinaAs an inertial sensor with excellent performance, the hemispherical resonator gyro is widely used in aerospace, weapon navigation and other fields due to its advantages of high precision, high reliability, and long life. Due to the uneven distributions of material properties and mass of the resonator in the circumferential direction, the frequencies of the two 4-antinodes vibration modes (operational mode) of resonator in different directions are different, which is called frequency splitting. Frequency splitting is the main error source affecting the accuracy of the hemispherical resonator gyro and must be suppressed. The frequency splitting is related to the structure of the resonator. For the planar-electrode-type hemispherical resonator gyro, in order to suppress the frequency splitting from the structure, improve the accuracy of the hemispherical resonator gyro, and determine and optimize the equivalent bottom angle parameters of the hemispherical resonator, this paper starts from the thin shell theory, and the 4-antinodes vibration mode and waveform precession model of the hemispherical resonator are researched. The effect of the equivalent bottom angle on the 4-antinodes vibration mode frequency value under different boundary conditions is theoretically analyzed and simulated. The simulation results show that the equivalent bottom angle affects the 4-antinodes vibration mode of the hemispherical resonator through radial constraints. The hemispherical resonator with mid-surface radius <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mo>=</mo><mn>15</mn><mrow><mo> </mo><mi>mm</mi></mrow></mrow></semantics></math></inline-formula> and shell thickness <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi><mo>=</mo><mn>1</mn><mrow><mo> </mo><mi>mm</mi></mrow></mrow></semantics></math></inline-formula> is the optimization object, and the stem diameter <i>D</i> and fillet radius <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>1</mn></msub></semantics></math></inline-formula> are experimental factors, with the 4-antinodes vibration mode frequency value and mass sensitivity factor as the response indexes. The central composite design is carried out to optimize the equivalent bottom angle parameters. The optimized structural parameters are: stem diameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mo>=</mo><mn>7</mn><mrow><mo> </mo><mi>mm</mi></mrow></mrow></semantics></math></inline-formula>, fillet radii <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn><mrow><mo> </mo><mi>mm</mi></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>2</mn></msub><mo>=</mo><mn>0.8</mn><mrow><mo> </mo><mi>mm</mi></mrow></mrow></semantics></math></inline-formula>. The simulation results show that the 4-antinodes vibration mode frequency value is 5441.761 Hz, and the mass sensitivity factor is 3.91 Hz/mg, which meets the working and excitation requirements wonderfully. This research will provide guidance and reference for improving the accuracy of the hemispherical resonator gyro.https://www.mdpi.com/2072-666X/14/9/1686hemispherical resonatorfrequency splittingstructural optimization4-antinodes vibration modemass sensitivity factor
spellingShingle Zhiyong Gao
Shang Wang
Zhi Wang
Xukai Ding
Simulation and Optimization of Hemispherical Resonator’s Equivalent Bottom Angle for Frequency-Splitting Suppression
Micromachines
hemispherical resonator
frequency splitting
structural optimization
4-antinodes vibration mode
mass sensitivity factor
title Simulation and Optimization of Hemispherical Resonator’s Equivalent Bottom Angle for Frequency-Splitting Suppression
title_full Simulation and Optimization of Hemispherical Resonator’s Equivalent Bottom Angle for Frequency-Splitting Suppression
title_fullStr Simulation and Optimization of Hemispherical Resonator’s Equivalent Bottom Angle for Frequency-Splitting Suppression
title_full_unstemmed Simulation and Optimization of Hemispherical Resonator’s Equivalent Bottom Angle for Frequency-Splitting Suppression
title_short Simulation and Optimization of Hemispherical Resonator’s Equivalent Bottom Angle for Frequency-Splitting Suppression
title_sort simulation and optimization of hemispherical resonator s equivalent bottom angle for frequency splitting suppression
topic hemispherical resonator
frequency splitting
structural optimization
4-antinodes vibration mode
mass sensitivity factor
url https://www.mdpi.com/2072-666X/14/9/1686
work_keys_str_mv AT zhiyonggao simulationandoptimizationofhemisphericalresonatorsequivalentbottomangleforfrequencysplittingsuppression
AT shangwang simulationandoptimizationofhemisphericalresonatorsequivalentbottomangleforfrequencysplittingsuppression
AT zhiwang simulationandoptimizationofhemisphericalresonatorsequivalentbottomangleforfrequencysplittingsuppression
AT xukaiding simulationandoptimizationofhemisphericalresonatorsequivalentbottomangleforfrequencysplittingsuppression