Promoting Role of Amorphous Carbon and Carbon Nanotubes Growth Modes of Methane Decomposition in One-Pot Catalytic Approach

We report the simultaneous production of hydrogen fuel and carbon nanotubes (CNTs) via methane dehydrogenation catalyzed with Ni/SBA-15. Most Ni nanoparticles (NPs) with size between 10 and 30 nm were highly dispersed on SBA-15 and most of them had a strong interaction with the support. At temperatu...

Full description

Bibliographic Details
Main Authors: Lifang Chen, Luis Enrique Noreña, Jin An Wang, Roberto Limas, Ulises Arellano, Oscar Arturo González Vargas
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/11/10/1217
Description
Summary:We report the simultaneous production of hydrogen fuel and carbon nanotubes (CNTs) via methane dehydrogenation catalyzed with Ni/SBA-15. Most Ni nanoparticles (NPs) with size between 10 and 30 nm were highly dispersed on SBA-15 and most of them had a strong interaction with the support. At temperatures ranging from 500 to 800 °C, methane could be decomposed to release hydrogen with 100% selectivity at conversion between 51 and 65%. There was no CO or CO<sub>2</sub> detectable in the reaction fluent. In the initial stage of the reaction, amorphous carbon and dehydrogenated methane species adsorbed on the Ni NPs promoted the CH<sub>4</sub> decomposition. The amorphous carbon atoms were then transformed into carbon nanotubes which chiefly consisted of a multiwall structure and grew towards different orientations via a tip-growth or a base-growth modes, controlled by the interaction strength between the Ni NPs and the SBA-15 support. Reaction temperature affected not only methane conversion, but also the diffusion of carbon atoms on/in the Ni NPs and their precipitation at the interfaces. At higher temperature, bamboo-like CNTs or onion-like metal-encapsulated carbons were formed, mainly due to the rate of carbon atom formation greater than that of carbon precipitation for CNTs construction. The CNTs formation mechanisms are discussed and their growth modes under different conditions are proposed.
ISSN:2073-4344