Kinetics of Odorant Recognition with a Graphene-Based Olfactory Receptor Mimicry

Malaria vector mosquito species rely on a handful of specific pheromones for mating; one of them, sulcatone (6-methyl-5-hepten-2-one), is also found in human exudation. Therefore, a complete understanding of the insect’s olfaction, and rapid real-time methods for odorant detection, are required. Her...

Full description

Bibliographic Details
Main Authors: Caroline Bonazza, Klaus Bonazza
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Chemosensors
Subjects:
Online Access:https://www.mdpi.com/2227-9040/10/6/203
Description
Summary:Malaria vector mosquito species rely on a handful of specific pheromones for mating; one of them, sulcatone (6-methyl-5-hepten-2-one), is also found in human exudation. Therefore, a complete understanding of the insect’s olfaction, and rapid real-time methods for odorant detection, are required. Here, we mimic the odorant recognition of the nerve cells of an insect’s antenna with a synthetic graphene-based bio-electro-interfacial odorant receptor. By this means, we obtain the kinetics of the genuine odorant recognition reaction and compare them to electro-antennogram data that represent the more complex scenario of a living insect. The odorant-binding proteins OBP 9A and 9B only associate with their ligands weakly, showing K<sub>D</sub>s of between 2.1 mM and 3 mM, while the binding kinetics of OBP proteins depend on the structural feature of a cystine knot and are modulated by the local milieu within a protein-aided enhancement zone.
ISSN:2227-9040