Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning study

Transcranial direct current stimulation (tDCS) is a promising adjuvant treatment for persistent auditory verbal hallucinations (AVH) in Schizophrenia (SZ). Nonetheless, there is considerable inter-patient variability in the treatment response of AVH to tDCS in SZ. Machine-learned models have the pot...

Full description

Bibliographic Details
Main Authors: Animesh Kumar Paul, Anushree Bose, Sunil Vasu Kalmady, Venkataram Shivakumar, Vanteemar S. Sreeraj, Rujuta Parlikar, Janardhanan C. Narayanaswamy, Serdar M. Dursun, Andrew J. Greenshaw, Russell Greiner, Ganesan Venkatasubramanian
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-08-01
Series:Frontiers in Psychiatry
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fpsyt.2022.923938/full
_version_ 1811315584253558784
author Animesh Kumar Paul
Animesh Kumar Paul
Anushree Bose
Anushree Bose
Sunil Vasu Kalmady
Sunil Vasu Kalmady
Venkataram Shivakumar
Venkataram Shivakumar
Vanteemar S. Sreeraj
Vanteemar S. Sreeraj
Rujuta Parlikar
Rujuta Parlikar
Janardhanan C. Narayanaswamy
Janardhanan C. Narayanaswamy
Serdar M. Dursun
Andrew J. Greenshaw
Russell Greiner
Russell Greiner
Russell Greiner
Ganesan Venkatasubramanian
Ganesan Venkatasubramanian
author_facet Animesh Kumar Paul
Animesh Kumar Paul
Anushree Bose
Anushree Bose
Sunil Vasu Kalmady
Sunil Vasu Kalmady
Venkataram Shivakumar
Venkataram Shivakumar
Vanteemar S. Sreeraj
Vanteemar S. Sreeraj
Rujuta Parlikar
Rujuta Parlikar
Janardhanan C. Narayanaswamy
Janardhanan C. Narayanaswamy
Serdar M. Dursun
Andrew J. Greenshaw
Russell Greiner
Russell Greiner
Russell Greiner
Ganesan Venkatasubramanian
Ganesan Venkatasubramanian
author_sort Animesh Kumar Paul
collection DOAJ
description Transcranial direct current stimulation (tDCS) is a promising adjuvant treatment for persistent auditory verbal hallucinations (AVH) in Schizophrenia (SZ). Nonetheless, there is considerable inter-patient variability in the treatment response of AVH to tDCS in SZ. Machine-learned models have the potential to predict clinical response to tDCS in SZ. This study aims to examine the feasibility of identifying SZ patients with persistent AVH (SZ-AVH) who will respond to tDCS based on resting-state functional connectivity (rs-FC). Thirty-four SZ-AVH patients underwent resting-state functional MRI at baseline followed by add-on, twice-daily, 20-min sessions with tDCS (conventional/high-definition) for 5 days. A machine learning model was developed to identify tDCS treatment responders based on the rs-FC pattern, using the left superior temporal gyrus (LSTG) as the seed region. Functional connectivity between LSTG and brain regions involved in auditory and sensorimotor processing emerged as the important predictors of the tDCS treatment response. L1-regularized logistic regression model had an overall accuracy of 72.5% in classifying responders vs. non-responders. This model outperformed the state-of-the-art convolutional neural networks (CNN) model—both without (59.41%) and with pre-training (68.82%). It also outperformed the L1-logistic regression model trained with baseline demographic features and clinical scores of SZ patients. This study reports the first evidence that rs-fMRI-derived brain connectivity pattern can predict the clinical response of persistent AVH to add-on tDCS in SZ patients with 72.5% accuracy.
first_indexed 2024-04-13T11:33:56Z
format Article
id doaj.art-613e01b71d484cbe807d0ecf82ae6bd5
institution Directory Open Access Journal
issn 1664-0640
language English
last_indexed 2024-04-13T11:33:56Z
publishDate 2022-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Psychiatry
spelling doaj.art-613e01b71d484cbe807d0ecf82ae6bd52022-12-22T02:48:30ZengFrontiers Media S.A.Frontiers in Psychiatry1664-06402022-08-011310.3389/fpsyt.2022.923938923938Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning studyAnimesh Kumar Paul0Animesh Kumar Paul1Anushree Bose2Anushree Bose3Sunil Vasu Kalmady4Sunil Vasu Kalmady5Venkataram Shivakumar6Venkataram Shivakumar7Vanteemar S. Sreeraj8Vanteemar S. Sreeraj9Rujuta Parlikar10Rujuta Parlikar11Janardhanan C. Narayanaswamy12Janardhanan C. Narayanaswamy13Serdar M. Dursun14Andrew J. Greenshaw15Russell Greiner16Russell Greiner17Russell Greiner18Ganesan Venkatasubramanian19Ganesan Venkatasubramanian20Alberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, CanadaDepartment of Computing Science, University of Alberta, Edmonton, AB, CanadaSchizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, IndiaTranslational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, IndiaAlberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, CanadaCanadian VIGOUR Centre, University of Alberta, Edmonton, AB, CanadaSchizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, IndiaTranslational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, IndiaSchizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, IndiaTranslational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, IndiaSchizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, IndiaTranslational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, IndiaSchizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, IndiaTranslational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, IndiaDepartment of Psychiatry, University of Alberta, Edmonton, AB, CanadaDepartment of Psychiatry, University of Alberta, Edmonton, AB, CanadaAlberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, CanadaDepartment of Computing Science, University of Alberta, Edmonton, AB, CanadaDepartment of Psychiatry, University of Alberta, Edmonton, AB, CanadaSchizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, IndiaTranslational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, IndiaTranscranial direct current stimulation (tDCS) is a promising adjuvant treatment for persistent auditory verbal hallucinations (AVH) in Schizophrenia (SZ). Nonetheless, there is considerable inter-patient variability in the treatment response of AVH to tDCS in SZ. Machine-learned models have the potential to predict clinical response to tDCS in SZ. This study aims to examine the feasibility of identifying SZ patients with persistent AVH (SZ-AVH) who will respond to tDCS based on resting-state functional connectivity (rs-FC). Thirty-four SZ-AVH patients underwent resting-state functional MRI at baseline followed by add-on, twice-daily, 20-min sessions with tDCS (conventional/high-definition) for 5 days. A machine learning model was developed to identify tDCS treatment responders based on the rs-FC pattern, using the left superior temporal gyrus (LSTG) as the seed region. Functional connectivity between LSTG and brain regions involved in auditory and sensorimotor processing emerged as the important predictors of the tDCS treatment response. L1-regularized logistic regression model had an overall accuracy of 72.5% in classifying responders vs. non-responders. This model outperformed the state-of-the-art convolutional neural networks (CNN) model—both without (59.41%) and with pre-training (68.82%). It also outperformed the L1-logistic regression model trained with baseline demographic features and clinical scores of SZ patients. This study reports the first evidence that rs-fMRI-derived brain connectivity pattern can predict the clinical response of persistent AVH to add-on tDCS in SZ patients with 72.5% accuracy.https://www.frontiersin.org/articles/10.3389/fpsyt.2022.923938/fulltranscranial direct current stimulation (tDCS)Schizophreniaauditory verbal hallucinationsresting-state functional connectivitymachine learningtreatment response
spellingShingle Animesh Kumar Paul
Animesh Kumar Paul
Anushree Bose
Anushree Bose
Sunil Vasu Kalmady
Sunil Vasu Kalmady
Venkataram Shivakumar
Venkataram Shivakumar
Vanteemar S. Sreeraj
Vanteemar S. Sreeraj
Rujuta Parlikar
Rujuta Parlikar
Janardhanan C. Narayanaswamy
Janardhanan C. Narayanaswamy
Serdar M. Dursun
Andrew J. Greenshaw
Russell Greiner
Russell Greiner
Russell Greiner
Ganesan Venkatasubramanian
Ganesan Venkatasubramanian
Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning study
Frontiers in Psychiatry
transcranial direct current stimulation (tDCS)
Schizophrenia
auditory verbal hallucinations
resting-state functional connectivity
machine learning
treatment response
title Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning study
title_full Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning study
title_fullStr Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning study
title_full_unstemmed Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning study
title_short Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning study
title_sort superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in schizophrenia a machine learning study
topic transcranial direct current stimulation (tDCS)
Schizophrenia
auditory verbal hallucinations
resting-state functional connectivity
machine learning
treatment response
url https://www.frontiersin.org/articles/10.3389/fpsyt.2022.923938/full
work_keys_str_mv AT animeshkumarpaul superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT animeshkumarpaul superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT anushreebose superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT anushreebose superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT sunilvasukalmady superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT sunilvasukalmady superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT venkataramshivakumar superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT venkataramshivakumar superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT vanteemarssreeraj superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT vanteemarssreeraj superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT rujutaparlikar superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT rujutaparlikar superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT janardhanancnarayanaswamy superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT janardhanancnarayanaswamy superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT serdarmdursun superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT andrewjgreenshaw superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT russellgreiner superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT russellgreiner superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT russellgreiner superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT ganesanvenkatasubramanian superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy
AT ganesanvenkatasubramanian superiortemporalgyrusfunctionalconnectivitypredictstranscranialdirectcurrentstimulationresponseinschizophreniaamachinelearningstudy