Towards a better understanding of the respective effects of milk yield and body condition dynamics on reproduction in Holstein dairy cows

The overall reproductive performance has decreased over the last decades, involving changes in cyclicity, oestrous behaviour and fertility. High milk yield (MY), low body condition score (BCS) and large body condition (BC) loss have been identified as risk factors. However, these effects are often c...

Full description

Bibliographic Details
Main Authors: E. Cutullic, L. Delaby, Y. Gallard, C. Disenhaus
Format: Article
Language:English
Published: Elsevier 2012-01-01
Series:Animal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S175173111100173X
Description
Summary:The overall reproductive performance has decreased over the last decades, involving changes in cyclicity, oestrous behaviour and fertility. High milk yield (MY), low body condition score (BCS) and large body condition (BC) loss have been identified as risk factors. However, these effects are often confounded, as high MY and body lipid reserve mobilization are correlated. The aim of this study was to evaluate the respective effects of MY and BC on post-partum ovarian cyclicity, oestrus and fertility of Holstein cows. This study provides novel information, as MY and BC change were uncoupled in the overall dataset that included 98 lactations and milk progesterone profiles. Cows were assigned to two feeding-level groups: high feed, which achieved high MY and moderate BC loss throughout lactation (8410 kg, −1.17 unit from calving to nadir BCS), and low feed, which limited MY and triggered a large BC loss (5719 kg, −1.54 unit). MY and BC had different effects at different stages of the reproductive process. Cyclicity as well as non-fertilization and early embryo mortality were mainly driven by body lipid reserves, whereas oestrous behaviour and late embryo mortality were related to MY. The results point to possible uncoupling between cyclicity, oestrus and early and late embryo survival allowing compensation along the reproductive process and leading to similar final reproductive performance. In compact calving systems, which require high pregnancy rates within a short period, higher MY strategies appear unsuitable even where BCS is maintained, owing to depressed oestrous behaviour and probably increased late embryo mortality, which delays rebreeding. Similarly, strategies that compromise cyclicity and fertility by excessively low BCS are unsuitable.
ISSN:1751-7311