Experimental investigation on bed shear stress distribution in the roughened compound channel

Abstract The roughness in the floodplains in a compound canal and its impact on hydraulic parameters such as the shear stress and their estimation are one of the problems that have attracted the attention of engineers. In this research, the aim is to investigate the effect of artificial on the flood...

Full description

Bibliographic Details
Main Author: Akram Abbaspour
Format: Article
Language:English
Published: SpringerOpen 2020-03-01
Series:Applied Water Science
Subjects:
Online Access:http://link.springer.com/article/10.1007/s13201-020-1161-z
_version_ 1811322407945764864
author Akram Abbaspour
author_facet Akram Abbaspour
author_sort Akram Abbaspour
collection DOAJ
description Abstract The roughness in the floodplains in a compound canal and its impact on hydraulic parameters such as the shear stress and their estimation are one of the problems that have attracted the attention of engineers. In this research, the aim is to investigate the effect of artificial on the floodplain of the compound channel on hydraulic parameters. In experiments, slope of channel bed was 0.0015 and three different discharges have been used. The four types of rigid roughness were used to investigate the effect of these parameters. These roughness elements were arranged with zigzag state with two distances of 4 k and 8 k (k is the height of roughness) in the floodplain. A Preston tube with an external diameter of 3 mm that equipped with dynamic pressure sensors was used to compute the shear stress. The Patel calibration curve was used in order to convert the difference between the static and dynamic pressure measured by the Preston tube to the shear stress values. The results showed that for the zigzag arrangement with the density of 4 k, the shear stress is reduced due to the high roughness density and the greater roughened area. In a rough bed, the shear stress in floodplain was significantly higher than smooth bed, and the stress distribution is such that it has descending trend from the main channel toward the wall of the floodplain. The shear stress increase for roughness with a spacing of 8 k is 22–36% higher than the similar hydraulic condition in a smooth bed and the shear stress for condition with the presence of a cylinder with D = 3 cm and roughness spacing of 8 k was 14–18% higher than the shear stress of bed without a cylinder and the same roughness density. The shear stress for condition of the presence of a cylinder with D = 6 cm and roughness spacing of 4 k is 24–30% more than the roughened plain with distances of 4 k.
first_indexed 2024-04-13T13:35:53Z
format Article
id doaj.art-615788c2b3474b1bb14b37264c130de6
institution Directory Open Access Journal
issn 2190-5487
2190-5495
language English
last_indexed 2024-04-13T13:35:53Z
publishDate 2020-03-01
publisher SpringerOpen
record_format Article
series Applied Water Science
spelling doaj.art-615788c2b3474b1bb14b37264c130de62022-12-22T02:44:48ZengSpringerOpenApplied Water Science2190-54872190-54952020-03-011031810.1007/s13201-020-1161-zExperimental investigation on bed shear stress distribution in the roughened compound channelAkram Abbaspour0Water Engineering Department, University of TabrizAbstract The roughness in the floodplains in a compound canal and its impact on hydraulic parameters such as the shear stress and their estimation are one of the problems that have attracted the attention of engineers. In this research, the aim is to investigate the effect of artificial on the floodplain of the compound channel on hydraulic parameters. In experiments, slope of channel bed was 0.0015 and three different discharges have been used. The four types of rigid roughness were used to investigate the effect of these parameters. These roughness elements were arranged with zigzag state with two distances of 4 k and 8 k (k is the height of roughness) in the floodplain. A Preston tube with an external diameter of 3 mm that equipped with dynamic pressure sensors was used to compute the shear stress. The Patel calibration curve was used in order to convert the difference between the static and dynamic pressure measured by the Preston tube to the shear stress values. The results showed that for the zigzag arrangement with the density of 4 k, the shear stress is reduced due to the high roughness density and the greater roughened area. In a rough bed, the shear stress in floodplain was significantly higher than smooth bed, and the stress distribution is such that it has descending trend from the main channel toward the wall of the floodplain. The shear stress increase for roughness with a spacing of 8 k is 22–36% higher than the similar hydraulic condition in a smooth bed and the shear stress for condition with the presence of a cylinder with D = 3 cm and roughness spacing of 8 k was 14–18% higher than the shear stress of bed without a cylinder and the same roughness density. The shear stress for condition of the presence of a cylinder with D = 6 cm and roughness spacing of 4 k is 24–30% more than the roughened plain with distances of 4 k.http://link.springer.com/article/10.1007/s13201-020-1161-zCompound channelFloodplainPreston tubeShear stress distributionRoughness
spellingShingle Akram Abbaspour
Experimental investigation on bed shear stress distribution in the roughened compound channel
Applied Water Science
Compound channel
Floodplain
Preston tube
Shear stress distribution
Roughness
title Experimental investigation on bed shear stress distribution in the roughened compound channel
title_full Experimental investigation on bed shear stress distribution in the roughened compound channel
title_fullStr Experimental investigation on bed shear stress distribution in the roughened compound channel
title_full_unstemmed Experimental investigation on bed shear stress distribution in the roughened compound channel
title_short Experimental investigation on bed shear stress distribution in the roughened compound channel
title_sort experimental investigation on bed shear stress distribution in the roughened compound channel
topic Compound channel
Floodplain
Preston tube
Shear stress distribution
Roughness
url http://link.springer.com/article/10.1007/s13201-020-1161-z
work_keys_str_mv AT akramabbaspour experimentalinvestigationonbedshearstressdistributionintheroughenedcompoundchannel