Interference of Non-Hermiticity with Hermiticity at Exceptional Points

The recent growth in popularity of the non-Hermitian quantum Hamiltonians <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>(</mo><mi>λ</mi><mo>)</m...

Full description

Bibliographic Details
Main Author: Miloslav Znojil
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/20/3721
_version_ 1797471715813490688
author Miloslav Znojil
author_facet Miloslav Znojil
author_sort Miloslav Znojil
collection DOAJ
description The recent growth in popularity of the non-Hermitian quantum Hamiltonians <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></semantics></math></inline-formula> with real spectra is strongly motivated by the phenomenologically innovative possibility of an access to the non-Hermitian degeneracies called exceptional points (EPs). What is actually presented in the present paper is a perturbation-theory-based demonstration of a fine-tuned nature of this access. This result is complemented by a toy-model-based analysis of the related details of quantum dynamics in the almost degenerate regime with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>≈</mo><msup><mi>λ</mi><mrow><mo>(</mo><mi>E</mi><mi>P</mi><mo>)</mo></mrow></msup></mrow></semantics></math></inline-formula>. In similar studies, naturally, one of the decisive obstacles is the highly nontrivial form of the underlying mathematics. Here, many of these obstacles are circumvented via several drastic simplifications of our toy models—i.a., our <i>N</i> by <i>N</i> matrices <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>H</mi><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are assumed real, tridiagonal and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">PT</mi></semantics></math></inline-formula>-symmetric, and our <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is assumed to be split into its Hermitian and non-Hermitian components staying in interaction. This is shown to lead to several remarkable spectral features of the model. Up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn>8</mn></mrow></semantics></math></inline-formula>, their description is even shown tractable non-numerically. In particular, it is shown that under generic perturbation, the “unfolding” removal of the spontaneous breakdown of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">PT</mi></semantics></math></inline-formula>-symmetry proceeds via intervals of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> with complex energy spectra.
first_indexed 2024-03-09T19:53:05Z
format Article
id doaj.art-6159e3d114ce4f4d8d6f94ac5364e8c1
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T19:53:05Z
publishDate 2022-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-6159e3d114ce4f4d8d6f94ac5364e8c12023-11-24T01:06:12ZengMDPI AGMathematics2227-73902022-10-011020372110.3390/math10203721Interference of Non-Hermiticity with Hermiticity at Exceptional PointsMiloslav Znojil0Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech RepublicThe recent growth in popularity of the non-Hermitian quantum Hamiltonians <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></semantics></math></inline-formula> with real spectra is strongly motivated by the phenomenologically innovative possibility of an access to the non-Hermitian degeneracies called exceptional points (EPs). What is actually presented in the present paper is a perturbation-theory-based demonstration of a fine-tuned nature of this access. This result is complemented by a toy-model-based analysis of the related details of quantum dynamics in the almost degenerate regime with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>≈</mo><msup><mi>λ</mi><mrow><mo>(</mo><mi>E</mi><mi>P</mi><mo>)</mo></mrow></msup></mrow></semantics></math></inline-formula>. In similar studies, naturally, one of the decisive obstacles is the highly nontrivial form of the underlying mathematics. Here, many of these obstacles are circumvented via several drastic simplifications of our toy models—i.a., our <i>N</i> by <i>N</i> matrices <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>H</mi><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are assumed real, tridiagonal and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">PT</mi></semantics></math></inline-formula>-symmetric, and our <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is assumed to be split into its Hermitian and non-Hermitian components staying in interaction. This is shown to lead to several remarkable spectral features of the model. Up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn>8</mn></mrow></semantics></math></inline-formula>, their description is even shown tractable non-numerically. In particular, it is shown that under generic perturbation, the “unfolding” removal of the spontaneous breakdown of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">PT</mi></semantics></math></inline-formula>-symmetry proceeds via intervals of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> with complex energy spectra.https://www.mdpi.com/2227-7390/10/20/3721non-Hermitian quantum mechanics of the closed and open systemsnon-Hermitian and Hermitian components of the Hamiltoniancontrol of access to the exceptional point degeneracies and to the related quantum phase transitionsperturbation theory tractability of the matrix toy models exhibiting PT symmetry
spellingShingle Miloslav Znojil
Interference of Non-Hermiticity with Hermiticity at Exceptional Points
Mathematics
non-Hermitian quantum mechanics of the closed and open systems
non-Hermitian and Hermitian components of the Hamiltonian
control of access to the exceptional point degeneracies and to the related quantum phase transitions
perturbation theory tractability of the matrix toy models exhibiting PT symmetry
title Interference of Non-Hermiticity with Hermiticity at Exceptional Points
title_full Interference of Non-Hermiticity with Hermiticity at Exceptional Points
title_fullStr Interference of Non-Hermiticity with Hermiticity at Exceptional Points
title_full_unstemmed Interference of Non-Hermiticity with Hermiticity at Exceptional Points
title_short Interference of Non-Hermiticity with Hermiticity at Exceptional Points
title_sort interference of non hermiticity with hermiticity at exceptional points
topic non-Hermitian quantum mechanics of the closed and open systems
non-Hermitian and Hermitian components of the Hamiltonian
control of access to the exceptional point degeneracies and to the related quantum phase transitions
perturbation theory tractability of the matrix toy models exhibiting PT symmetry
url https://www.mdpi.com/2227-7390/10/20/3721
work_keys_str_mv AT miloslavznojil interferenceofnonhermiticitywithhermiticityatexceptionalpoints