A Novel Strategy to Enhance the pH Stability of Zein Particles through Octenyl Succinic Anhydride-Modified Starch: The Role of Preparation pH

Ensuring the stability of zein nanoparticles at different pH levels is crucial for their application as nanocarriers. In this study, octenyl succinic anhydride-modified starch (OSA-modified starch) was employed to enhance the stability of zein nanoparticles against different pH levels by forming com...

Full description

Bibliographic Details
Main Authors: Linlin Wang, Pengjie Wang, Yi Li, Siyuan Liu, Lida Wu, Weibo Zhang, Chong Chen
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/13/2/303
Description
Summary:Ensuring the stability of zein nanoparticles at different pH levels is crucial for their application as nanocarriers. In this study, octenyl succinic anhydride-modified starch (OSA-modified starch) was employed to enhance the stability of zein nanoparticles against different pH levels by forming complex nanoparticles with OSA-modified starch. The effect of preparation pH on the stability of the zein/OSA-modified starch nanoparticles was investigated. Sedimentation occurred in zein nanoparticles as the pH reached the isoelectric point. However, the stability of zein nanoparticles at various pH levels significantly improved after adding OSA-modified starch to form zein/OSA-modified starch nanoparticles regardless of whether they were prepared under acidic or alkaline pH conditions. Notably, the stability of zein/OSA-modified starch nanoparticles prepared at an acidic pH was higher than that of those prepared at an alkaline pH, thereby highlighting the critical role of the preparation pH for zein/OSA-modified starch in maintaining the stability of zein. The stable zein/OSA-modified starch nanoparticles developed in this study exhibit significant potential for use in delivery systems across various pH environments.
ISSN:2304-8158