Different Associations between Tonsil Microbiome, Chronic Tonsillitis, and Intermittent Hypoxemia among Obstructive Sleep Apnea Children of Different Weight Status: A Pilot Case-Control Study

The tonsil microbiome is associated with chronic tonsillitis and obstructive sleep apnea (OSA) in children, and the gut microbiome is associated with host weight status. In this study, we hypothesized that weight status may be associated with clinical profiles and the tonsil microbiome in children w...

Full description

Bibliographic Details
Main Authors: Hai-Hua Chuang, Jen-Fu Hsu, Li-Pang Chuang, Cheng-Hsun Chiu, Yen-Lin Huang, Hsueh-Yu Li, Ning-Hung Chen, Yu-Shu Huang, Chun-Wei Chuang, Chung-Guei Huang, Hsin-Chih Lai, Li-Ang Lee
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Journal of Personalized Medicine
Subjects:
Online Access:https://www.mdpi.com/2075-4426/11/6/486
Description
Summary:The tonsil microbiome is associated with chronic tonsillitis and obstructive sleep apnea (OSA) in children, and the gut microbiome is associated with host weight status. In this study, we hypothesized that weight status may be associated with clinical profiles and the tonsil microbiome in children with OSA. We prospectively enrolled 33 non-healthy-weight (cases) and 33 healthy-weight (controls) pediatric OSA patients matched by the proportion of chronic tonsillitis. Differences in the tonsil microbiome between the non-healthy-weight and healthy-weight subgroups and relationships between the tonsil microbiome and clinical variables were investigated. Non-healthy weight was associated with significant intermittent hypoxemia (oxygen desaturation index, mean blood saturation (SpO<sub>2</sub>), and minimal SpO<sub>2</sub>) and higher systolic blood pressure percentile, but was not related to the tonsil microbiome. However, chronic tonsillitis was related to Acidobacteria in the non-healthy-weight subgroup, and oxygen desaturation index was associated with Bacteroidetes in the healthy-weight subgroup. In post hoc analysis, the children with mean SpO<sub>2</sub> ≤ 97% had reduced <i>α</i> and <i>β</i> diversities and a higher abundance of Bacteroidetes than those with mean SpO<sub>2</sub> > 97%. These preliminary findings are novel and provide insights into future research to understand the pathogenesis of the disease and develop personalized treatments for pediatric OSA.
ISSN:2075-4426