Project, toolkit, and database of neuroinformatics ecosystem: A summary of previous studies on “Frontiers in Neuroinformatics”

In the field of neuroscience, the core of the cohort study project consists of collection, analysis, and sharing of multi-modal data. Recent years have witnessed a host of efficient and high-quality toolkits published and employed to improve the quality of multi-modal data in the cohort study. In tu...

Full description

Bibliographic Details
Main Authors: Xin Li, Huadong Liang
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-09-01
Series:Frontiers in Neuroinformatics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fninf.2022.902452/full
Description
Summary:In the field of neuroscience, the core of the cohort study project consists of collection, analysis, and sharing of multi-modal data. Recent years have witnessed a host of efficient and high-quality toolkits published and employed to improve the quality of multi-modal data in the cohort study. In turn, gleaning answers to relevant questions from such a conglomeration of studies is a time-consuming task for cohort researchers. As part of our efforts to tackle this problem, we propose a hierarchical neuroscience knowledge base that consists of projects/organizations, multi-modal databases, and toolkits, so as to facilitate researchers' answer searching process. We first classified studies conducted for the topic “Frontiers in Neuroinformatics” according to the multi-modal data life cycle, and from these studies, information objects as projects/organizations, multi-modal databases, and toolkits have been extracted. Then, we map these information objects into our proposed knowledge base framework. A Python-based query tool has also been developed in tandem for quicker access to the knowledge base, (accessible at https://github.com/Romantic-Pumpkin/PDT_fninf). Finally, based on the constructed knowledge base, we discussed some key research issues and underlying trends in different stages of the multi-modal data life cycle.
ISSN:1662-5196