Study of the Potential for Agricultural Reuse of Urban Wastewater with Membrane Bioreactor Technology in the Circular Economy Framework
The growing demand for water by the population and industry, as well as water scarcity due to climate change, has created a need to reuse treated water for agricultural purposes. In this context, the European Union, through its Regulation (EU) 2020/741, establishes minimum requirements for wastewate...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-08-01
|
Series: | Agronomy |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4395/12/8/1877 |
_version_ | 1797432566900326400 |
---|---|
author | Laura Antiñolo Bermúdez Juan Carlos Leyva Díaz Jaime Martín Pascual María del Mar Muñío Martínez José Manuel Poyatos Capilla |
author_facet | Laura Antiñolo Bermúdez Juan Carlos Leyva Díaz Jaime Martín Pascual María del Mar Muñío Martínez José Manuel Poyatos Capilla |
author_sort | Laura Antiñolo Bermúdez |
collection | DOAJ |
description | The growing demand for water by the population and industry, as well as water scarcity due to climate change, has created a need to reuse treated water for agricultural purposes. In this context, the European Union, through its Regulation (EU) 2020/741, establishes minimum requirements for wastewater reuse, specifying that reuse for agricultural purposes can help to promote the circular economy and reduce the need for fertiliser use by setting high-quality standards. The aim of this article is to study whether the treated water from a pilot plant with membrane bioreactor technology operating with real urban wastewater from the city of Granada (Spain) satisfies the quality standards required for its reuse for agricultural purposes, as well as assessing the use of other resources produced during wastewater treatment, such as biogas and biostabilised sludge. This plant works in four cycles of operation at two different hydraulic retention times (6 and 12 h) and different concentrations of mixed liquor (2429–6696 mg/L). The pilot plant consists of a membrane bioreactor where there are four ultrafiltration membranes working in continuous operation and a sludge treatment line working in discontinuous mode. Subsequently, a tertiary treatment of advanced oxidation process was applied to the treated water for a time of 30 min, with different concentrations of oxidant. The results showed that the effluent has sufficient quality to be used in agriculture, complying with the characteristics established in the European legislation. Furthermore, the biostabilised sludge and biogas can be potentially reusable. |
first_indexed | 2024-03-09T10:02:26Z |
format | Article |
id | doaj.art-61a4401a881a415f9521a8e2a41916b1 |
institution | Directory Open Access Journal |
issn | 2073-4395 |
language | English |
last_indexed | 2024-03-09T10:02:26Z |
publishDate | 2022-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Agronomy |
spelling | doaj.art-61a4401a881a415f9521a8e2a41916b12023-12-01T23:18:07ZengMDPI AGAgronomy2073-43952022-08-01128187710.3390/agronomy12081877Study of the Potential for Agricultural Reuse of Urban Wastewater with Membrane Bioreactor Technology in the Circular Economy FrameworkLaura Antiñolo Bermúdez0Juan Carlos Leyva Díaz1Jaime Martín Pascual2María del Mar Muñío Martínez3José Manuel Poyatos Capilla4Department of Civil Engineering and Institute of Water Research, University of Granada, 18071 Granada, SpainDepartment of Civil Engineering and Institute of Water Research, University of Granada, 18071 Granada, SpainDepartment of Civil Engineering and Institute of Water Research, University of Granada, 18071 Granada, SpainDepartment of Chemical Engineering and Institute of Water Research, University of Granada, 18071 Granada, SpainDepartment of Civil Engineering and Institute of Water Research, University of Granada, 18071 Granada, SpainThe growing demand for water by the population and industry, as well as water scarcity due to climate change, has created a need to reuse treated water for agricultural purposes. In this context, the European Union, through its Regulation (EU) 2020/741, establishes minimum requirements for wastewater reuse, specifying that reuse for agricultural purposes can help to promote the circular economy and reduce the need for fertiliser use by setting high-quality standards. The aim of this article is to study whether the treated water from a pilot plant with membrane bioreactor technology operating with real urban wastewater from the city of Granada (Spain) satisfies the quality standards required for its reuse for agricultural purposes, as well as assessing the use of other resources produced during wastewater treatment, such as biogas and biostabilised sludge. This plant works in four cycles of operation at two different hydraulic retention times (6 and 12 h) and different concentrations of mixed liquor (2429–6696 mg/L). The pilot plant consists of a membrane bioreactor where there are four ultrafiltration membranes working in continuous operation and a sludge treatment line working in discontinuous mode. Subsequently, a tertiary treatment of advanced oxidation process was applied to the treated water for a time of 30 min, with different concentrations of oxidant. The results showed that the effluent has sufficient quality to be used in agriculture, complying with the characteristics established in the European legislation. Furthermore, the biostabilised sludge and biogas can be potentially reusable.https://www.mdpi.com/2073-4395/12/8/1877agriculturecircular economymembrane bioreactorreusewastewater treatment |
spellingShingle | Laura Antiñolo Bermúdez Juan Carlos Leyva Díaz Jaime Martín Pascual María del Mar Muñío Martínez José Manuel Poyatos Capilla Study of the Potential for Agricultural Reuse of Urban Wastewater with Membrane Bioreactor Technology in the Circular Economy Framework Agronomy agriculture circular economy membrane bioreactor reuse wastewater treatment |
title | Study of the Potential for Agricultural Reuse of Urban Wastewater with Membrane Bioreactor Technology in the Circular Economy Framework |
title_full | Study of the Potential for Agricultural Reuse of Urban Wastewater with Membrane Bioreactor Technology in the Circular Economy Framework |
title_fullStr | Study of the Potential for Agricultural Reuse of Urban Wastewater with Membrane Bioreactor Technology in the Circular Economy Framework |
title_full_unstemmed | Study of the Potential for Agricultural Reuse of Urban Wastewater with Membrane Bioreactor Technology in the Circular Economy Framework |
title_short | Study of the Potential for Agricultural Reuse of Urban Wastewater with Membrane Bioreactor Technology in the Circular Economy Framework |
title_sort | study of the potential for agricultural reuse of urban wastewater with membrane bioreactor technology in the circular economy framework |
topic | agriculture circular economy membrane bioreactor reuse wastewater treatment |
url | https://www.mdpi.com/2073-4395/12/8/1877 |
work_keys_str_mv | AT lauraantinolobermudez studyofthepotentialforagriculturalreuseofurbanwastewaterwithmembranebioreactortechnologyinthecirculareconomyframework AT juancarlosleyvadiaz studyofthepotentialforagriculturalreuseofurbanwastewaterwithmembranebioreactortechnologyinthecirculareconomyframework AT jaimemartinpascual studyofthepotentialforagriculturalreuseofurbanwastewaterwithmembranebioreactortechnologyinthecirculareconomyframework AT mariadelmarmuniomartinez studyofthepotentialforagriculturalreuseofurbanwastewaterwithmembranebioreactortechnologyinthecirculareconomyframework AT josemanuelpoyatoscapilla studyofthepotentialforagriculturalreuseofurbanwastewaterwithmembranebioreactortechnologyinthecirculareconomyframework |