Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution

This paper studies the secrecy capacity of an <i>n</i>-dimensional Gaussian wiretap channel under a peak power constraint. This work determines the largest peak power constraint <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"...

Full description

Bibliographic Details
Main Authors: Antonino Favano, Luca Barletta, Alex Dytso
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/5/741
_version_ 1797600240784637952
author Antonino Favano
Luca Barletta
Alex Dytso
author_facet Antonino Favano
Luca Barletta
Alex Dytso
author_sort Antonino Favano
collection DOAJ
description This paper studies the secrecy capacity of an <i>n</i>-dimensional Gaussian wiretap channel under a peak power constraint. This work determines the largest peak power constraint <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi mathvariant="sans-serif">R</mi><mo>¯</mo></mover><mi>n</mi></msub></semantics></math></inline-formula>, such that an input distribution uniformly distributed on a single sphere is optimal; this regime is termed the low-amplitude regime. The asymptotic value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi mathvariant="sans-serif">R</mi><mo>¯</mo></mover><mi>n</mi></msub></semantics></math></inline-formula> as <i>n</i> goes to infinity is completely characterized as a function of noise variance at both receivers. Moreover, the secrecy capacity is also characterized in a form amenable to computation. Several numerical examples are provided, such as the example of the secrecy-capacity-achieving distribution beyond the low-amplitude regime. Furthermore, for the scalar case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>=</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>, we show that the secrecy-capacity-achieving input distribution is discrete with finitely many points at most at the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><msup><mi mathvariant="sans-serif">R</mi><mn>2</mn></msup><msubsup><mi>σ</mi><mn>1</mn><mn>2</mn></msubsup></mfrac></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>σ</mi><mn>1</mn><mn>2</mn></msubsup></semantics></math></inline-formula> is the variance of the Gaussian noise over the legitimate channel.
first_indexed 2024-03-11T03:45:42Z
format Article
id doaj.art-61d2a376a3c74e8fa4c6550d4a044ff0
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-11T03:45:42Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-61d2a376a3c74e8fa4c6550d4a044ff02023-11-18T01:15:44ZengMDPI AGEntropy1099-43002023-04-0125574110.3390/e25050741Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input DistributionAntonino Favano0Luca Barletta1Alex Dytso2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, ItalyDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, ItalyQualcomm, Bridgewater, NJ 08807, USAThis paper studies the secrecy capacity of an <i>n</i>-dimensional Gaussian wiretap channel under a peak power constraint. This work determines the largest peak power constraint <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi mathvariant="sans-serif">R</mi><mo>¯</mo></mover><mi>n</mi></msub></semantics></math></inline-formula>, such that an input distribution uniformly distributed on a single sphere is optimal; this regime is termed the low-amplitude regime. The asymptotic value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi mathvariant="sans-serif">R</mi><mo>¯</mo></mover><mi>n</mi></msub></semantics></math></inline-formula> as <i>n</i> goes to infinity is completely characterized as a function of noise variance at both receivers. Moreover, the secrecy capacity is also characterized in a form amenable to computation. Several numerical examples are provided, such as the example of the secrecy-capacity-achieving distribution beyond the low-amplitude regime. Furthermore, for the scalar case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>=</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>, we show that the secrecy-capacity-achieving input distribution is discrete with finitely many points at most at the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><msup><mi mathvariant="sans-serif">R</mi><mn>2</mn></msup><msubsup><mi>σ</mi><mn>1</mn><mn>2</mn></msubsup></mfrac></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>σ</mi><mn>1</mn><mn>2</mn></msubsup></semantics></math></inline-formula> is the variance of the Gaussian noise over the legitimate channel.https://www.mdpi.com/1099-4300/25/5/741wiretap channelMIMOamplitude constraints
spellingShingle Antonino Favano
Luca Barletta
Alex Dytso
Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution
Entropy
wiretap channel
MIMO
amplitude constraints
title Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution
title_full Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution
title_fullStr Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution
title_full_unstemmed Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution
title_short Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution
title_sort amplitude constrained vector gaussian wiretap channel properties of the secrecy capacity achieving input distribution
topic wiretap channel
MIMO
amplitude constraints
url https://www.mdpi.com/1099-4300/25/5/741
work_keys_str_mv AT antoninofavano amplitudeconstrainedvectorgaussianwiretapchannelpropertiesofthesecrecycapacityachievinginputdistribution
AT lucabarletta amplitudeconstrainedvectorgaussianwiretapchannelpropertiesofthesecrecycapacityachievinginputdistribution
AT alexdytso amplitudeconstrainedvectorgaussianwiretapchannelpropertiesofthesecrecycapacityachievinginputdistribution