Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution
This paper studies the secrecy capacity of an <i>n</i>-dimensional Gaussian wiretap channel under a peak power constraint. This work determines the largest peak power constraint <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-04-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/25/5/741 |
_version_ | 1797600240784637952 |
---|---|
author | Antonino Favano Luca Barletta Alex Dytso |
author_facet | Antonino Favano Luca Barletta Alex Dytso |
author_sort | Antonino Favano |
collection | DOAJ |
description | This paper studies the secrecy capacity of an <i>n</i>-dimensional Gaussian wiretap channel under a peak power constraint. This work determines the largest peak power constraint <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi mathvariant="sans-serif">R</mi><mo>¯</mo></mover><mi>n</mi></msub></semantics></math></inline-formula>, such that an input distribution uniformly distributed on a single sphere is optimal; this regime is termed the low-amplitude regime. The asymptotic value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi mathvariant="sans-serif">R</mi><mo>¯</mo></mover><mi>n</mi></msub></semantics></math></inline-formula> as <i>n</i> goes to infinity is completely characterized as a function of noise variance at both receivers. Moreover, the secrecy capacity is also characterized in a form amenable to computation. Several numerical examples are provided, such as the example of the secrecy-capacity-achieving distribution beyond the low-amplitude regime. Furthermore, for the scalar case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>=</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>, we show that the secrecy-capacity-achieving input distribution is discrete with finitely many points at most at the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><msup><mi mathvariant="sans-serif">R</mi><mn>2</mn></msup><msubsup><mi>σ</mi><mn>1</mn><mn>2</mn></msubsup></mfrac></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>σ</mi><mn>1</mn><mn>2</mn></msubsup></semantics></math></inline-formula> is the variance of the Gaussian noise over the legitimate channel. |
first_indexed | 2024-03-11T03:45:42Z |
format | Article |
id | doaj.art-61d2a376a3c74e8fa4c6550d4a044ff0 |
institution | Directory Open Access Journal |
issn | 1099-4300 |
language | English |
last_indexed | 2024-03-11T03:45:42Z |
publishDate | 2023-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Entropy |
spelling | doaj.art-61d2a376a3c74e8fa4c6550d4a044ff02023-11-18T01:15:44ZengMDPI AGEntropy1099-43002023-04-0125574110.3390/e25050741Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input DistributionAntonino Favano0Luca Barletta1Alex Dytso2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, ItalyDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, ItalyQualcomm, Bridgewater, NJ 08807, USAThis paper studies the secrecy capacity of an <i>n</i>-dimensional Gaussian wiretap channel under a peak power constraint. This work determines the largest peak power constraint <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi mathvariant="sans-serif">R</mi><mo>¯</mo></mover><mi>n</mi></msub></semantics></math></inline-formula>, such that an input distribution uniformly distributed on a single sphere is optimal; this regime is termed the low-amplitude regime. The asymptotic value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi mathvariant="sans-serif">R</mi><mo>¯</mo></mover><mi>n</mi></msub></semantics></math></inline-formula> as <i>n</i> goes to infinity is completely characterized as a function of noise variance at both receivers. Moreover, the secrecy capacity is also characterized in a form amenable to computation. Several numerical examples are provided, such as the example of the secrecy-capacity-achieving distribution beyond the low-amplitude regime. Furthermore, for the scalar case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>=</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>, we show that the secrecy-capacity-achieving input distribution is discrete with finitely many points at most at the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><msup><mi mathvariant="sans-serif">R</mi><mn>2</mn></msup><msubsup><mi>σ</mi><mn>1</mn><mn>2</mn></msubsup></mfrac></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>σ</mi><mn>1</mn><mn>2</mn></msubsup></semantics></math></inline-formula> is the variance of the Gaussian noise over the legitimate channel.https://www.mdpi.com/1099-4300/25/5/741wiretap channelMIMOamplitude constraints |
spellingShingle | Antonino Favano Luca Barletta Alex Dytso Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution Entropy wiretap channel MIMO amplitude constraints |
title | Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution |
title_full | Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution |
title_fullStr | Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution |
title_full_unstemmed | Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution |
title_short | Amplitude Constrained Vector Gaussian Wiretap Channel: Properties of the Secrecy-Capacity-Achieving Input Distribution |
title_sort | amplitude constrained vector gaussian wiretap channel properties of the secrecy capacity achieving input distribution |
topic | wiretap channel MIMO amplitude constraints |
url | https://www.mdpi.com/1099-4300/25/5/741 |
work_keys_str_mv | AT antoninofavano amplitudeconstrainedvectorgaussianwiretapchannelpropertiesofthesecrecycapacityachievinginputdistribution AT lucabarletta amplitudeconstrainedvectorgaussianwiretapchannelpropertiesofthesecrecycapacityachievinginputdistribution AT alexdytso amplitudeconstrainedvectorgaussianwiretapchannelpropertiesofthesecrecycapacityachievinginputdistribution |