Positive solutions to one-dimensional quasilinear impulsive indefinite boundary value problems

Abstract Consider the one-dimensional quasilinear impulsive boundary value problem involving the p-Laplace operator {−(ϕp(u′))′=λω(t)f(u),0<t<1,−Δu|t=tk=μIk(u(tk)),k=1,2,…,n,Δu′|t=tk=0,k=1,2,…,n,u′(0)=0,u(1)=∫01g(t)u(t)dt, $$ \textstyle\begin{cases} -(\phi_{p}(u'))'=\lambda \omega (t...

Full description

Bibliographic Details
Main Authors: Peige Qin, Meiqiang Feng, Ping Li
Format: Article
Language:English
Published: SpringerOpen 2018-11-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-018-1881-7
_version_ 1818084680364195840
author Peige Qin
Meiqiang Feng
Ping Li
author_facet Peige Qin
Meiqiang Feng
Ping Li
author_sort Peige Qin
collection DOAJ
description Abstract Consider the one-dimensional quasilinear impulsive boundary value problem involving the p-Laplace operator {−(ϕp(u′))′=λω(t)f(u),0<t<1,−Δu|t=tk=μIk(u(tk)),k=1,2,…,n,Δu′|t=tk=0,k=1,2,…,n,u′(0)=0,u(1)=∫01g(t)u(t)dt, $$ \textstyle\begin{cases} -(\phi_{p}(u'))'=\lambda \omega (t)f(u), \quad 0< t< 1, \\ -\Delta u|_{t=t_{k}}=\mu I_{k}(u(t_{k})), \quad k=1,2,\ldots,n, \\ \Delta u'|_{t=t_{k}}=0, \quad k=1,2,\ldots,n, \\ u'(0)=0, \qquad u(1)=\int_{0}^{1}g(t)u(t)\,dt, \end{cases} $$ where λ,μ>0 $\lambda, \mu >0$ are two positive parameters, ϕp(s) $\phi_{p}(s)$ is the p-Laplace operator, i.e., ϕp(s)=|s|p−2s $\phi_{p}(s)=|s|^{p-2}s$, p>1 $p>1$, ω(t) $\omega (t)$ changes sign on [0,1] $[0,1]$. Several new results are obtained for the above quasilinear indefinite problem.
first_indexed 2024-12-10T19:57:44Z
format Article
id doaj.art-61d2d1f26b294460ac5812491dc116ac
institution Directory Open Access Journal
issn 1687-1847
language English
last_indexed 2024-12-10T19:57:44Z
publishDate 2018-11-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-61d2d1f26b294460ac5812491dc116ac2022-12-22T01:35:36ZengSpringerOpenAdvances in Difference Equations1687-18472018-11-012018111610.1186/s13662-018-1881-7Positive solutions to one-dimensional quasilinear impulsive indefinite boundary value problemsPeige Qin0Meiqiang Feng1Ping Li2School of Applied Science, Beijing Information Science & Technology UniversitySchool of Applied Science, Beijing Information Science & Technology UniversitySchool of Applied Science, Beijing Information Science & Technology UniversityAbstract Consider the one-dimensional quasilinear impulsive boundary value problem involving the p-Laplace operator {−(ϕp(u′))′=λω(t)f(u),0<t<1,−Δu|t=tk=μIk(u(tk)),k=1,2,…,n,Δu′|t=tk=0,k=1,2,…,n,u′(0)=0,u(1)=∫01g(t)u(t)dt, $$ \textstyle\begin{cases} -(\phi_{p}(u'))'=\lambda \omega (t)f(u), \quad 0< t< 1, \\ -\Delta u|_{t=t_{k}}=\mu I_{k}(u(t_{k})), \quad k=1,2,\ldots,n, \\ \Delta u'|_{t=t_{k}}=0, \quad k=1,2,\ldots,n, \\ u'(0)=0, \qquad u(1)=\int_{0}^{1}g(t)u(t)\,dt, \end{cases} $$ where λ,μ>0 $\lambda, \mu >0$ are two positive parameters, ϕp(s) $\phi_{p}(s)$ is the p-Laplace operator, i.e., ϕp(s)=|s|p−2s $\phi_{p}(s)=|s|^{p-2}s$, p>1 $p>1$, ω(t) $\omega (t)$ changes sign on [0,1] $[0,1]$. Several new results are obtained for the above quasilinear indefinite problem.http://link.springer.com/article/10.1186/s13662-018-1881-7Multiplicity of positive solutionsIndefinite weight functionp-Laplace operatorQuasilinear impulsive differential equation
spellingShingle Peige Qin
Meiqiang Feng
Ping Li
Positive solutions to one-dimensional quasilinear impulsive indefinite boundary value problems
Advances in Difference Equations
Multiplicity of positive solutions
Indefinite weight function
p-Laplace operator
Quasilinear impulsive differential equation
title Positive solutions to one-dimensional quasilinear impulsive indefinite boundary value problems
title_full Positive solutions to one-dimensional quasilinear impulsive indefinite boundary value problems
title_fullStr Positive solutions to one-dimensional quasilinear impulsive indefinite boundary value problems
title_full_unstemmed Positive solutions to one-dimensional quasilinear impulsive indefinite boundary value problems
title_short Positive solutions to one-dimensional quasilinear impulsive indefinite boundary value problems
title_sort positive solutions to one dimensional quasilinear impulsive indefinite boundary value problems
topic Multiplicity of positive solutions
Indefinite weight function
p-Laplace operator
Quasilinear impulsive differential equation
url http://link.springer.com/article/10.1186/s13662-018-1881-7
work_keys_str_mv AT peigeqin positivesolutionstoonedimensionalquasilinearimpulsiveindefiniteboundaryvalueproblems
AT meiqiangfeng positivesolutionstoonedimensionalquasilinearimpulsiveindefiniteboundaryvalueproblems
AT pingli positivesolutionstoonedimensionalquasilinearimpulsiveindefiniteboundaryvalueproblems