Summary: | During the horizontal freezing construction of a subway tunnel, the delay of the closure of the frozen wall occurs frequently due to the existence of groundwater seepage, which can be directly reflected by a freezing temperature field. Accordingly, the distribution of ground surface frost heaving displacement under seepage conditions will be different from that under hydrostatic conditions. In view of this, this paper uses COMSOL to realize the hydro–thermal coupling in frozen stratum under seepage conditions, then, the frost heaving distribution of seepage stratum in tunnel construction using horizontal freezing technique is researched considering the ice–water phase transition and orthotropic deformation characteristics of frozen–thawed soil by ABAQUS. The results show that the expansion speed of upstream frozen wall is obviously slower than that of the downstream frozen wall, and the freezing temperature field is symmetrical along the seepage direction. In addition, the ground frost heaving displacement field is asymmetrically distributed along the tunnel center line, which is manifested in that the vertical frost heaving displacement of the upstream stratum is less than that of the downstream stratum. The vertical frost heaving displacement of the ground surface decreases with the increase in tunnel buried depth, but the position of the maximum value remains unchanged as the tunnel buried depth increases. The numerical simulation method established in this paper can provide a theoretical basis and design reference for the construction of a subway tunnel in a water-rich stratum under different seepage using the artificial freezing technique.
|