Summary: | In the traditional raw Doppler (RD) velocity estimation method, the positioning error of the pseudorange-based global navigation satellite system (GNSS) single point positioning (SPP) solution affects the accuracy of the velocity estimation through the station-satellite unit cosine vector. To eliminate the effect of positioning errors, this paper proposes a carrier-phase-based second generation of the BeiDou navigation satellite system (BDS-2) precise point positioning (PPP) RD velocity estimation method. Compared with the SPP positioning accuracy of tens of meters, the BDS-2 kinematic PPP positioning accuracy is significantly improved to the dm level. In order to verify the reliability and applicability of the developed method, three dedicated tests, the vehicle-borne, ship-borne and air-borne platforms, were conducted. In the vehicle-borne experiment, the GNSS and inertial navigation system (INS)-integrated velocity solution was chosen as the reference. The velocity accuracy of the BDS-2 PPP RD method was better than that of SPP RD by 28.4%, 27.1% and 26.1% in the east, north and up directions, respectively. In the ship-borne and air-borne experiments, the BDS-2 PPP RD velocity accuracy was improved by 17.4%, 21.4%, 17.8%, and 38.1%, 17.6%, 17.5% in the same three directions, respectively, compared with the BDS-2 SPP RD solutions. The reference in these two tests is the real-time kinematic (RTK) Position Derivation (PD)-based velocity.
|