Detection of Background Water Leaks Using a High-Resolution Dyadic Transform

This article solves the problem of detecting water leaks with a minimum size of down to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mrow><mtext> </mtext><mi&...

Full description

Bibliographic Details
Main Authors: Eduardo Trutié-Carrero, Diego Seuret-Jiménez, José M. Nieto-Jalil, Julio C. Herrera-Díaz, Jorge Cantó, J. Jesús Escobedo-Alatorre
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/15/4/736
_version_ 1797617710729789440
author Eduardo Trutié-Carrero
Diego Seuret-Jiménez
José M. Nieto-Jalil
Julio C. Herrera-Díaz
Jorge Cantó
J. Jesús Escobedo-Alatorre
author_facet Eduardo Trutié-Carrero
Diego Seuret-Jiménez
José M. Nieto-Jalil
Julio C. Herrera-Díaz
Jorge Cantó
J. Jesús Escobedo-Alatorre
author_sort Eduardo Trutié-Carrero
collection DOAJ
description This article solves the problem of detecting water leaks with a minimum size of down to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mrow><mtext> </mtext><mi>mm</mi></mrow></mrow></semantics></math></inline-formula> in diameter. Two new mathematical tools are used to solve this problem: the first one is the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">T</mi><mi>e</mi></msub></mrow></semantics></math></inline-formula> cross-spectral density and the second is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">T</mi><mi>e</mi></msub></mrow></semantics></math></inline-formula> coherence. These mathematical tools provide the possibility of discriminating spurious frequency components, making use of the property of multi-sensitivity. This advantage makes it possible to maximize the sensitivity of the frequency spectrum. The wavelet function used was Daubechies <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>45</mn></mrow></semantics></math></inline-formula>, because it provides an attenuation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>150</mn><mrow><mtext> </mtext><mi>dB</mi></mrow></mrow></semantics></math></inline-formula> in the rejection band. The tools were validated with two scenarios. For the first scenario, a synthetic signal was analyzed. In the second scenario, two types of background leakage were analyzed: the first one has a diameter of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mrow><mtext> </mtext><mi>mm</mi></mrow></mrow></semantics></math></inline-formula> with a signal-to-noise ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.82</mn><mrow><mtext> </mtext><mi>dB</mi></mrow></mrow></semantics></math></inline-formula> and flow rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>33.7</mn><mrow><mtext> </mtext><mi>mL</mi></mrow><mo>/</mo><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>, and the second one has a diameter of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mrow><mtext> </mtext><mi>mm</mi></mrow></mrow></semantics></math></inline-formula> with a signal-to-noise ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.73</mn><mrow><mtext> </mtext><mi>dB</mi></mrow></mrow></semantics></math></inline-formula> with a flow rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>125.0</mn><mrow><mtext> </mtext><mi>mL</mi></mrow><mo>/</mo><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>. The results reported in this paper show that both the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">T</mi><mi>e</mi></msub></mrow></semantics></math></inline-formula> cross-spectral density and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">T</mi><mi>e</mi></msub></mrow></semantics></math></inline-formula> coherence are higher than those reported in scientific literature.
first_indexed 2024-03-11T07:59:41Z
format Article
id doaj.art-623d18f11ddd4598b3ca8241ba2ffb12
institution Directory Open Access Journal
issn 2073-4441
language English
last_indexed 2024-03-11T07:59:41Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Water
spelling doaj.art-623d18f11ddd4598b3ca8241ba2ffb122023-11-16T23:52:47ZengMDPI AGWater2073-44412023-02-0115473610.3390/w15040736Detection of Background Water Leaks Using a High-Resolution Dyadic TransformEduardo Trutié-Carrero0Diego Seuret-Jiménez1José M. Nieto-Jalil2Julio C. Herrera-Díaz3Jorge Cantó4J. Jesús Escobedo-Alatorre5Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, Cuernavaca 62209, MexicoCentro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, Cuernavaca 62209, MexicoTecnologico de Monterrey, School of Engineering and Sciences, Reserva Territorial Atlixcáyotl, Puebla 72453, MexicoCentro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, Cuernavaca 62209, MexicoCorrosión y Protección (CyP), Buffon 46, Mexico City 11590, MexicoCentro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, Cuernavaca 62209, MexicoThis article solves the problem of detecting water leaks with a minimum size of down to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mrow><mtext> </mtext><mi>mm</mi></mrow></mrow></semantics></math></inline-formula> in diameter. Two new mathematical tools are used to solve this problem: the first one is the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">T</mi><mi>e</mi></msub></mrow></semantics></math></inline-formula> cross-spectral density and the second is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">T</mi><mi>e</mi></msub></mrow></semantics></math></inline-formula> coherence. These mathematical tools provide the possibility of discriminating spurious frequency components, making use of the property of multi-sensitivity. This advantage makes it possible to maximize the sensitivity of the frequency spectrum. The wavelet function used was Daubechies <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>45</mn></mrow></semantics></math></inline-formula>, because it provides an attenuation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>150</mn><mrow><mtext> </mtext><mi>dB</mi></mrow></mrow></semantics></math></inline-formula> in the rejection band. The tools were validated with two scenarios. For the first scenario, a synthetic signal was analyzed. In the second scenario, two types of background leakage were analyzed: the first one has a diameter of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mrow><mtext> </mtext><mi>mm</mi></mrow></mrow></semantics></math></inline-formula> with a signal-to-noise ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.82</mn><mrow><mtext> </mtext><mi>dB</mi></mrow></mrow></semantics></math></inline-formula> and flow rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>33.7</mn><mrow><mtext> </mtext><mi>mL</mi></mrow><mo>/</mo><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>, and the second one has a diameter of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mrow><mtext> </mtext><mi>mm</mi></mrow></mrow></semantics></math></inline-formula> with a signal-to-noise ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.73</mn><mrow><mtext> </mtext><mi>dB</mi></mrow></mrow></semantics></math></inline-formula> with a flow rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>125.0</mn><mrow><mtext> </mtext><mi>mL</mi></mrow><mo>/</mo><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>. The results reported in this paper show that both the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">T</mi><mi>e</mi></msub></mrow></semantics></math></inline-formula> cross-spectral density and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">T</mi><mi>e</mi></msub></mrow></semantics></math></inline-formula> coherence are higher than those reported in scientific literature.https://www.mdpi.com/2073-4441/15/4/736cross-correlationfrequency dyadic spectrum<named-content content-type="inline"><inline-formula> <mml:math id="mm111113"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="script">T</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content> coherence<named-content content-type="inline"><inline-formula> <mml:math id="mm111114"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="script">T</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content> cross-spectral density<named-content content-type="inline"><inline-formula> <mml:math id="mm111115"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="script">T</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content> transform
spellingShingle Eduardo Trutié-Carrero
Diego Seuret-Jiménez
José M. Nieto-Jalil
Julio C. Herrera-Díaz
Jorge Cantó
J. Jesús Escobedo-Alatorre
Detection of Background Water Leaks Using a High-Resolution Dyadic Transform
Water
cross-correlation
frequency dyadic spectrum
<named-content content-type="inline"><inline-formula> <mml:math id="mm111113"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="script">T</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content> coherence
<named-content content-type="inline"><inline-formula> <mml:math id="mm111114"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="script">T</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content> cross-spectral density
<named-content content-type="inline"><inline-formula> <mml:math id="mm111115"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="script">T</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content> transform
title Detection of Background Water Leaks Using a High-Resolution Dyadic Transform
title_full Detection of Background Water Leaks Using a High-Resolution Dyadic Transform
title_fullStr Detection of Background Water Leaks Using a High-Resolution Dyadic Transform
title_full_unstemmed Detection of Background Water Leaks Using a High-Resolution Dyadic Transform
title_short Detection of Background Water Leaks Using a High-Resolution Dyadic Transform
title_sort detection of background water leaks using a high resolution dyadic transform
topic cross-correlation
frequency dyadic spectrum
<named-content content-type="inline"><inline-formula> <mml:math id="mm111113"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="script">T</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content> coherence
<named-content content-type="inline"><inline-formula> <mml:math id="mm111114"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="script">T</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content> cross-spectral density
<named-content content-type="inline"><inline-formula> <mml:math id="mm111115"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="script">T</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content> transform
url https://www.mdpi.com/2073-4441/15/4/736
work_keys_str_mv AT eduardotrutiecarrero detectionofbackgroundwaterleaksusingahighresolutiondyadictransform
AT diegoseuretjimenez detectionofbackgroundwaterleaksusingahighresolutiondyadictransform
AT josemnietojalil detectionofbackgroundwaterleaksusingahighresolutiondyadictransform
AT juliocherreradiaz detectionofbackgroundwaterleaksusingahighresolutiondyadictransform
AT jorgecanto detectionofbackgroundwaterleaksusingahighresolutiondyadictransform
AT jjesusescobedoalatorre detectionofbackgroundwaterleaksusingahighresolutiondyadictransform