Multiple small solutions for $p(x)$-Schrödinger equations with local sublinear nonlinearities via genus theory

In this paper, we deal with the following $p(x)$-Schrödinger problem: \begin{equation*} \begin{cases} -\text{div}(|\nabla u|^{p(x)-2}\nabla u)+V(x)\left\vert u\right\vert ^{p(x)-2}u=f(x,u) & \hbox{in $\mathbb{R}^{N}$ ;} \\ u\in W^{1,p(x)}(\mathbb{R}^{N}), & \hbox{} \end{cases} \end{eq...

Full description

Bibliographic Details
Main Authors: Rabil Ayazoglu (Mashiyev), Ismail Ekincioglu, Gulizar Alisoy
Format: Article
Language:English
Published: University of Szeged 2017-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5912
Description
Summary:In this paper, we deal with the following $p(x)$-Schrödinger problem: \begin{equation*} \begin{cases} -\text{div}(|\nabla u|^{p(x)-2}\nabla u)+V(x)\left\vert u\right\vert ^{p(x)-2}u=f(x,u) & \hbox{in $\mathbb{R}^{N}$ ;} \\ u\in W^{1,p(x)}(\mathbb{R}^{N}), & \hbox{} \end{cases} \end{equation*} where the nonlinearity is sublinear. We present the existence of infinitely many solutions for the problem. The main tool used here is a variational method and Krasnoselskii's genus theory combined with the theory of variable exponent Sobolev spaces. We also establish a Bartsch–Wang type compact embedding theorem for the variable exponent spaces.
ISSN:1417-3875