Multiple small solutions for $p(x)$-Schrödinger equations with local sublinear nonlinearities via genus theory
In this paper, we deal with the following $p(x)$-Schrödinger problem: \begin{equation*} \begin{cases} -\text{div}(|\nabla u|^{p(x)-2}\nabla u)+V(x)\left\vert u\right\vert ^{p(x)-2}u=f(x,u) & \hbox{in $\mathbb{R}^{N}$ ;} \\ u\in W^{1,p(x)}(\mathbb{R}^{N}), & \hbox{} \end{cases} \end{eq...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2017-11-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=5912 |
Summary: | In this paper, we deal with the following $p(x)$-Schrödinger problem:
\begin{equation*}
\begin{cases}
-\text{div}(|\nabla u|^{p(x)-2}\nabla u)+V(x)\left\vert u\right\vert
^{p(x)-2}u=f(x,u) & \hbox{in $\mathbb{R}^{N}$ ;} \\
u\in W^{1,p(x)}(\mathbb{R}^{N}), & \hbox{}
\end{cases}
\end{equation*}
where the nonlinearity is sublinear. We present the existence of infinitely many solutions for the problem. The main tool used here is a variational method and Krasnoselskii's genus theory combined with the theory of variable exponent Sobolev spaces. We also establish a Bartsch–Wang type compact embedding theorem for the variable exponent spaces. |
---|---|
ISSN: | 1417-3875 |