Multiple small solutions for $p(x)$-Schrödinger equations with local sublinear nonlinearities via genus theory

In this paper, we deal with the following $p(x)$-Schrödinger problem: \begin{equation*} \begin{cases} -\text{div}(|\nabla u|^{p(x)-2}\nabla u)+V(x)\left\vert u\right\vert ^{p(x)-2}u=f(x,u) & \hbox{in $\mathbb{R}^{N}$ ;} \\ u\in W^{1,p(x)}(\mathbb{R}^{N}), & \hbox{} \end{cases} \end{eq...

Full description

Bibliographic Details
Main Authors: Rabil Ayazoglu (Mashiyev), Ismail Ekincioglu, Gulizar Alisoy
Format: Article
Language:English
Published: University of Szeged 2017-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5912
_version_ 1797830579840876544
author Rabil Ayazoglu (Mashiyev)
Ismail Ekincioglu
Gulizar Alisoy
author_facet Rabil Ayazoglu (Mashiyev)
Ismail Ekincioglu
Gulizar Alisoy
author_sort Rabil Ayazoglu (Mashiyev)
collection DOAJ
description In this paper, we deal with the following $p(x)$-Schrödinger problem: \begin{equation*} \begin{cases} -\text{div}(|\nabla u|^{p(x)-2}\nabla u)+V(x)\left\vert u\right\vert ^{p(x)-2}u=f(x,u) & \hbox{in $\mathbb{R}^{N}$ ;} \\ u\in W^{1,p(x)}(\mathbb{R}^{N}), & \hbox{} \end{cases} \end{equation*} where the nonlinearity is sublinear. We present the existence of infinitely many solutions for the problem. The main tool used here is a variational method and Krasnoselskii's genus theory combined with the theory of variable exponent Sobolev spaces. We also establish a Bartsch–Wang type compact embedding theorem for the variable exponent spaces.
first_indexed 2024-04-09T13:38:21Z
format Article
id doaj.art-62414cc81f784cc5838f10f7c50e3ab3
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:38:21Z
publishDate 2017-11-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-62414cc81f784cc5838f10f7c50e3ab32023-05-09T07:53:07ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752017-11-0120177511610.14232/ejqtde.2017.1.755912Multiple small solutions for $p(x)$-Schrödinger equations with local sublinear nonlinearities via genus theoryRabil Ayazoglu (Mashiyev)0Ismail Ekincioglu1Gulizar Alisoy2Bayburt University, TurkeyFaculty of Science and Arts, Dumlupinar University, Kutahya, TurkeyFaculty of Science and Arts, Namik Kemal University, Tekirdag, TurkeyIn this paper, we deal with the following $p(x)$-Schrödinger problem: \begin{equation*} \begin{cases} -\text{div}(|\nabla u|^{p(x)-2}\nabla u)+V(x)\left\vert u\right\vert ^{p(x)-2}u=f(x,u) & \hbox{in $\mathbb{R}^{N}$ ;} \\ u\in W^{1,p(x)}(\mathbb{R}^{N}), & \hbox{} \end{cases} \end{equation*} where the nonlinearity is sublinear. We present the existence of infinitely many solutions for the problem. The main tool used here is a variational method and Krasnoselskii's genus theory combined with the theory of variable exponent Sobolev spaces. We also establish a Bartsch–Wang type compact embedding theorem for the variable exponent spaces.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5912$p(x)$-laplace operatorschrödinger equationvariable exponent lebesgue–sobolev spaceskrasnoselskii's genus
spellingShingle Rabil Ayazoglu (Mashiyev)
Ismail Ekincioglu
Gulizar Alisoy
Multiple small solutions for $p(x)$-Schrödinger equations with local sublinear nonlinearities via genus theory
Electronic Journal of Qualitative Theory of Differential Equations
$p(x)$-laplace operator
schrödinger equation
variable exponent lebesgue–sobolev spaces
krasnoselskii's genus
title Multiple small solutions for $p(x)$-Schrödinger equations with local sublinear nonlinearities via genus theory
title_full Multiple small solutions for $p(x)$-Schrödinger equations with local sublinear nonlinearities via genus theory
title_fullStr Multiple small solutions for $p(x)$-Schrödinger equations with local sublinear nonlinearities via genus theory
title_full_unstemmed Multiple small solutions for $p(x)$-Schrödinger equations with local sublinear nonlinearities via genus theory
title_short Multiple small solutions for $p(x)$-Schrödinger equations with local sublinear nonlinearities via genus theory
title_sort multiple small solutions for p x schrodinger equations with local sublinear nonlinearities via genus theory
topic $p(x)$-laplace operator
schrödinger equation
variable exponent lebesgue–sobolev spaces
krasnoselskii's genus
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5912
work_keys_str_mv AT rabilayazoglumashiyev multiplesmallsolutionsforpxschrodingerequationswithlocalsublinearnonlinearitiesviagenustheory
AT ismailekincioglu multiplesmallsolutionsforpxschrodingerequationswithlocalsublinearnonlinearitiesviagenustheory
AT gulizaralisoy multiplesmallsolutionsforpxschrodingerequationswithlocalsublinearnonlinearitiesviagenustheory