Systematic review on gene–sun exposure interactions in skin cancer

Abstract Background The risk of skin cancer is determined by environmental factors like ultraviolet radiation (UVR), personal habits like time spent outdoors and genetic factors. This review aimed to survey existing studies in gene–environment (GxE) interaction on skin cancer risk, and report on GxE...

Full description

Bibliographic Details
Main Authors: Rasha Shraim, Mohamed Ziad Farran, George He, Jelena Marunica Karsaj, Lina Zgaga, Ross McManus
Format: Article
Language:English
Published: Wiley 2023-10-01
Series:Molecular Genetics & Genomic Medicine
Subjects:
Online Access:https://doi.org/10.1002/mgg3.2259
Description
Summary:Abstract Background The risk of skin cancer is determined by environmental factors like ultraviolet radiation (UVR), personal habits like time spent outdoors and genetic factors. This review aimed to survey existing studies in gene–environment (GxE) interaction on skin cancer risk, and report on GxE effect estimates. Methods We searched Embase, Medline (Ovid) and Web of Science (Core Collection) and included only primary research that reported on GxE on the risk of the three most common types of skin cancer: basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and melanoma. Quality assessment followed the Newcastle–Ottawa Scale. Meta‐analysis was not possible because no two studies examined the same interaction. This review was registered on PROSPERO (CRD42021238064). Results In total 260 records were identified after exclusion of duplicates. Fifteen studies were included in the final synthesis—12 used candidate gene approach. We found some evidence of GxE interactions with sun exposure, notably, with MC1R, CAT and NOS1 genes in melanoma, HAL and IL23A in BCC and HAL and XRCC1 in SCC. Conclusion Sun exposure seems to interact with genes involved in pigmentation, oxidative stress and immunosuppression, indicating that excessive UV exposure might exhaust oxidative defence and repair systems differentially, dependent on genetic make‐up. Further research is warranted to better understand skin cancer epidemiology and develop sun exposure recommendations. A genome‐wide approach is recommended as it might uncover unknown disease pathways dependent on UV radiation.
ISSN:2324-9269