A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis

The Multi-Encoder Variational AutoEncoder (ME-VAE) is a computational model that can control for multiple transformational features in single-cell imaging data, enabling researchers to extract meaningful single-cell information and better separate heterogeneous cell types.

Bibliographic Details
Main Authors: Luke Ternes, Mark Dane, Sean Gross, Marilyne Labrie, Gordon Mills, Joe Gray, Laura Heiser, Young Hwan Chang
Format: Article
Language:English
Published: Nature Portfolio 2022-03-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-022-03218-x
_version_ 1818776080644833280
author Luke Ternes
Mark Dane
Sean Gross
Marilyne Labrie
Gordon Mills
Joe Gray
Laura Heiser
Young Hwan Chang
author_facet Luke Ternes
Mark Dane
Sean Gross
Marilyne Labrie
Gordon Mills
Joe Gray
Laura Heiser
Young Hwan Chang
author_sort Luke Ternes
collection DOAJ
description The Multi-Encoder Variational AutoEncoder (ME-VAE) is a computational model that can control for multiple transformational features in single-cell imaging data, enabling researchers to extract meaningful single-cell information and better separate heterogeneous cell types.
first_indexed 2024-12-18T11:07:15Z
format Article
id doaj.art-62591d36456a47f795a757db9843ff3a
institution Directory Open Access Journal
issn 2399-3642
language English
last_indexed 2024-12-18T11:07:15Z
publishDate 2022-03-01
publisher Nature Portfolio
record_format Article
series Communications Biology
spelling doaj.art-62591d36456a47f795a757db9843ff3a2022-12-21T21:10:04ZengNature PortfolioCommunications Biology2399-36422022-03-015111010.1038/s42003-022-03218-xA multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysisLuke Ternes0Mark Dane1Sean Gross2Marilyne Labrie3Gordon Mills4Joe Gray5Laura Heiser6Young Hwan Chang7Biomedical Engineering Department, Oregon Health & Science UniversityBiomedical Engineering Department, Oregon Health & Science UniversityBiomedical Engineering Department, Oregon Health & Science UniversityCell, Developmental and Cancer Biology Department, Oregon Health & Science UniversityCell, Developmental and Cancer Biology Department, Oregon Health & Science UniversityBiomedical Engineering Department, Oregon Health & Science UniversityBiomedical Engineering Department, Oregon Health & Science UniversityBiomedical Engineering Department, Oregon Health & Science UniversityThe Multi-Encoder Variational AutoEncoder (ME-VAE) is a computational model that can control for multiple transformational features in single-cell imaging data, enabling researchers to extract meaningful single-cell information and better separate heterogeneous cell types.https://doi.org/10.1038/s42003-022-03218-x
spellingShingle Luke Ternes
Mark Dane
Sean Gross
Marilyne Labrie
Gordon Mills
Joe Gray
Laura Heiser
Young Hwan Chang
A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis
Communications Biology
title A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis
title_full A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis
title_fullStr A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis
title_full_unstemmed A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis
title_short A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis
title_sort multi encoder variational autoencoder controls multiple transformational features in single cell image analysis
url https://doi.org/10.1038/s42003-022-03218-x
work_keys_str_mv AT luketernes amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT markdane amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT seangross amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT marilynelabrie amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT gordonmills amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT joegray amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT lauraheiser amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT younghwanchang amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT luketernes multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT markdane multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT seangross multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT marilynelabrie multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT gordonmills multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT joegray multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT lauraheiser multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis
AT younghwanchang multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis