A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis
The Multi-Encoder Variational AutoEncoder (ME-VAE) is a computational model that can control for multiple transformational features in single-cell imaging data, enabling researchers to extract meaningful single-cell information and better separate heterogeneous cell types.
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-03-01
|
Series: | Communications Biology |
Online Access: | https://doi.org/10.1038/s42003-022-03218-x |
_version_ | 1818776080644833280 |
---|---|
author | Luke Ternes Mark Dane Sean Gross Marilyne Labrie Gordon Mills Joe Gray Laura Heiser Young Hwan Chang |
author_facet | Luke Ternes Mark Dane Sean Gross Marilyne Labrie Gordon Mills Joe Gray Laura Heiser Young Hwan Chang |
author_sort | Luke Ternes |
collection | DOAJ |
description | The Multi-Encoder Variational AutoEncoder (ME-VAE) is a computational model that can control for multiple transformational features in single-cell imaging data, enabling researchers to extract meaningful single-cell information and better separate heterogeneous cell types. |
first_indexed | 2024-12-18T11:07:15Z |
format | Article |
id | doaj.art-62591d36456a47f795a757db9843ff3a |
institution | Directory Open Access Journal |
issn | 2399-3642 |
language | English |
last_indexed | 2024-12-18T11:07:15Z |
publishDate | 2022-03-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Communications Biology |
spelling | doaj.art-62591d36456a47f795a757db9843ff3a2022-12-21T21:10:04ZengNature PortfolioCommunications Biology2399-36422022-03-015111010.1038/s42003-022-03218-xA multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysisLuke Ternes0Mark Dane1Sean Gross2Marilyne Labrie3Gordon Mills4Joe Gray5Laura Heiser6Young Hwan Chang7Biomedical Engineering Department, Oregon Health & Science UniversityBiomedical Engineering Department, Oregon Health & Science UniversityBiomedical Engineering Department, Oregon Health & Science UniversityCell, Developmental and Cancer Biology Department, Oregon Health & Science UniversityCell, Developmental and Cancer Biology Department, Oregon Health & Science UniversityBiomedical Engineering Department, Oregon Health & Science UniversityBiomedical Engineering Department, Oregon Health & Science UniversityBiomedical Engineering Department, Oregon Health & Science UniversityThe Multi-Encoder Variational AutoEncoder (ME-VAE) is a computational model that can control for multiple transformational features in single-cell imaging data, enabling researchers to extract meaningful single-cell information and better separate heterogeneous cell types.https://doi.org/10.1038/s42003-022-03218-x |
spellingShingle | Luke Ternes Mark Dane Sean Gross Marilyne Labrie Gordon Mills Joe Gray Laura Heiser Young Hwan Chang A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis Communications Biology |
title | A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis |
title_full | A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis |
title_fullStr | A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis |
title_full_unstemmed | A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis |
title_short | A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis |
title_sort | multi encoder variational autoencoder controls multiple transformational features in single cell image analysis |
url | https://doi.org/10.1038/s42003-022-03218-x |
work_keys_str_mv | AT luketernes amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT markdane amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT seangross amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT marilynelabrie amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT gordonmills amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT joegray amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT lauraheiser amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT younghwanchang amultiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT luketernes multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT markdane multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT seangross multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT marilynelabrie multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT gordonmills multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT joegray multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT lauraheiser multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis AT younghwanchang multiencodervariationalautoencodercontrolsmultipletransformationalfeaturesinsinglecellimageanalysis |