Supermassive Black Holes from Bose-Einstein Condensed Dark Matter—Or Black and Dark Separation by Angular Momentum

Many supermassive black holes (SMBH) of mass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>10</mn><mrow><mn>6</mn><mo>∼</mo><mn>9</mn>...

Full description

Bibliographic Details
Main Author: Masahiro Morikawa
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/7/8/265
_version_ 1828714853779374080
author Masahiro Morikawa
author_facet Masahiro Morikawa
author_sort Masahiro Morikawa
collection DOAJ
description Many supermassive black holes (SMBH) of mass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>10</mn><mrow><mn>6</mn><mo>∼</mo><mn>9</mn></mrow></msup><msub><mi>M</mi><mo>⊙</mo></msub></mrow></semantics></math></inline-formula> are observed at the center of each galaxy even in the high redshift (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>≈</mo><mn>7</mn></mrow></semantics></math></inline-formula>) Universe. To explain the early formation and the common existence of SMBH, we previously proposed the SMBH formation scenario by the gravitational collapse of the coherent dark matter (DM) composed from the Bose-Einstein Condensed (BEC) objects. A difficult problem in this scenario is the inevitable angular momentum which prevents the collapse of BEC. To overcome this difficulty, in this paper, we consider the very early Universe when the BEC-DM acquires its proper angular momentum by the tidal torque mechanism. The balance of the density evolution and the acquisition of the angular momentum determines the mass of the SMBH as well as the mass ratio of BH and the surrounding dark halo (DH). This ratio is calculated as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>M</mi><mrow><mi>B</mi><mi>H</mi></mrow></msub><mo>/</mo><msub><mi>M</mi><mrow><mi>D</mi><mi>H</mi></mrow></msub><mo>≈</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn><mo>∼</mo><mo>−</mo><mn>5</mn></mrow></msup><msup><mrow><mo>(</mo><msub><mi>M</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi></mrow></msub><mo>/</mo><msup><mn>10</mn><mn>12</mn></msup><msub><mi mathvariant="normal">M</mi><mo>⊙</mo></msub><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> assuming simple density profiles of the initial DM cloud. This result turns out to be consistent with the observations at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>≈</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>≈</mo><mn>6</mn></mrow></semantics></math></inline-formula>, although the data scatter is large. Thus, the angular momentum determines the separation of black and dark, i.e., SMBH and DH, in the original DM cloud.
first_indexed 2024-03-10T08:19:32Z
format Article
id doaj.art-625e75256e354b64980df246a7dc9898
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-10T08:19:32Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-625e75256e354b64980df246a7dc98982023-11-22T10:05:23ZengMDPI AGUniverse2218-19972021-07-017826510.3390/universe7080265Supermassive Black Holes from Bose-Einstein Condensed Dark Matter—Or Black and Dark Separation by Angular MomentumMasahiro Morikawa0Department of Physics, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, JapanMany supermassive black holes (SMBH) of mass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>10</mn><mrow><mn>6</mn><mo>∼</mo><mn>9</mn></mrow></msup><msub><mi>M</mi><mo>⊙</mo></msub></mrow></semantics></math></inline-formula> are observed at the center of each galaxy even in the high redshift (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>≈</mo><mn>7</mn></mrow></semantics></math></inline-formula>) Universe. To explain the early formation and the common existence of SMBH, we previously proposed the SMBH formation scenario by the gravitational collapse of the coherent dark matter (DM) composed from the Bose-Einstein Condensed (BEC) objects. A difficult problem in this scenario is the inevitable angular momentum which prevents the collapse of BEC. To overcome this difficulty, in this paper, we consider the very early Universe when the BEC-DM acquires its proper angular momentum by the tidal torque mechanism. The balance of the density evolution and the acquisition of the angular momentum determines the mass of the SMBH as well as the mass ratio of BH and the surrounding dark halo (DH). This ratio is calculated as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>M</mi><mrow><mi>B</mi><mi>H</mi></mrow></msub><mo>/</mo><msub><mi>M</mi><mrow><mi>D</mi><mi>H</mi></mrow></msub><mo>≈</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn><mo>∼</mo><mo>−</mo><mn>5</mn></mrow></msup><msup><mrow><mo>(</mo><msub><mi>M</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi></mrow></msub><mo>/</mo><msup><mn>10</mn><mn>12</mn></msup><msub><mi mathvariant="normal">M</mi><mo>⊙</mo></msub><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> assuming simple density profiles of the initial DM cloud. This result turns out to be consistent with the observations at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>≈</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>≈</mo><mn>6</mn></mrow></semantics></math></inline-formula>, although the data scatter is large. Thus, the angular momentum determines the separation of black and dark, i.e., SMBH and DH, in the original DM cloud.https://www.mdpi.com/2218-1997/7/8/265black holeBose-Einstein condensationangular momentumtidal torqueturbulencedark matter
spellingShingle Masahiro Morikawa
Supermassive Black Holes from Bose-Einstein Condensed Dark Matter—Or Black and Dark Separation by Angular Momentum
Universe
black hole
Bose-Einstein condensation
angular momentum
tidal torque
turbulence
dark matter
title Supermassive Black Holes from Bose-Einstein Condensed Dark Matter—Or Black and Dark Separation by Angular Momentum
title_full Supermassive Black Holes from Bose-Einstein Condensed Dark Matter—Or Black and Dark Separation by Angular Momentum
title_fullStr Supermassive Black Holes from Bose-Einstein Condensed Dark Matter—Or Black and Dark Separation by Angular Momentum
title_full_unstemmed Supermassive Black Holes from Bose-Einstein Condensed Dark Matter—Or Black and Dark Separation by Angular Momentum
title_short Supermassive Black Holes from Bose-Einstein Condensed Dark Matter—Or Black and Dark Separation by Angular Momentum
title_sort supermassive black holes from bose einstein condensed dark matter or black and dark separation by angular momentum
topic black hole
Bose-Einstein condensation
angular momentum
tidal torque
turbulence
dark matter
url https://www.mdpi.com/2218-1997/7/8/265
work_keys_str_mv AT masahiromorikawa supermassiveblackholesfromboseeinsteincondenseddarkmatterorblackanddarkseparationbyangularmomentum