On cofree S-spaces and cofree S-flows

Let S-Tych be the category of Tychonoff S-spaces for a topological monoid S. We study the cofree S-spaces and cofree S-flows over topological spaces and we prove that for any topological space X and a topological monoid S, the function space C(S,X) with the compact-open topology and the action s · f...

Full description

Bibliographic Details
Main Author: Behnam Khosravi
Format: Article
Language:English
Published: Universitat Politècnica de València 2012-04-01
Series:Applied General Topology
Subjects:
Online Access:http://polipapers.upv.es/index.php/AGT/article/view/1632
_version_ 1818549299155304448
author Behnam Khosravi
author_facet Behnam Khosravi
author_sort Behnam Khosravi
collection DOAJ
description Let S-Tych be the category of Tychonoff S-spaces for a topological monoid S. We study the cofree S-spaces and cofree S-flows over topological spaces and we prove that for any topological space X and a topological monoid S, the function space C(S,X) with the compact-open topology and the action s · f = (t → f(st)) is the cofree S-space over X if and only if the compact-open topology is admissible and Tychonoff. Finally we study injective S-spaces and we characterize injective cofree S-spaces, when the compact-open topology is admissible and Tychonoff. As a consequence of this result, we characterize the cofree S-spaces and cofree S-flows, when S is a locally compact topological monoid.
first_indexed 2024-12-12T08:31:33Z
format Article
id doaj.art-625fa38a6d2a44cf9d66aded8cb50ca4
institution Directory Open Access Journal
issn 1576-9402
1989-4147
language English
last_indexed 2024-12-12T08:31:33Z
publishDate 2012-04-01
publisher Universitat Politècnica de València
record_format Article
series Applied General Topology
spelling doaj.art-625fa38a6d2a44cf9d66aded8cb50ca42022-12-22T00:31:05ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472012-04-0113111010.4995/agt.2012.16321334On cofree S-spaces and cofree S-flowsBehnam Khosravi0Institute for Advanced Studies in Basic SciencesLet S-Tych be the category of Tychonoff S-spaces for a topological monoid S. We study the cofree S-spaces and cofree S-flows over topological spaces and we prove that for any topological space X and a topological monoid S, the function space C(S,X) with the compact-open topology and the action s · f = (t → f(st)) is the cofree S-space over X if and only if the compact-open topology is admissible and Tychonoff. Finally we study injective S-spaces and we characterize injective cofree S-spaces, when the compact-open topology is admissible and Tychonoff. As a consequence of this result, we characterize the cofree S-spaces and cofree S-flows, when S is a locally compact topological monoid.http://polipapers.upv.es/index.php/AGT/article/view/1632S-spaceS-flowCofree S-spaceCofree S-flow Compact-open topologyInjective S-space
spellingShingle Behnam Khosravi
On cofree S-spaces and cofree S-flows
Applied General Topology
S-space
S-flow
Cofree S-space
Cofree S-flow Compact-open topology
Injective S-space
title On cofree S-spaces and cofree S-flows
title_full On cofree S-spaces and cofree S-flows
title_fullStr On cofree S-spaces and cofree S-flows
title_full_unstemmed On cofree S-spaces and cofree S-flows
title_short On cofree S-spaces and cofree S-flows
title_sort on cofree s spaces and cofree s flows
topic S-space
S-flow
Cofree S-space
Cofree S-flow Compact-open topology
Injective S-space
url http://polipapers.upv.es/index.php/AGT/article/view/1632
work_keys_str_mv AT behnamkhosravi oncofreesspacesandcofreesflows