On cofree S-spaces and cofree S-flows
Let S-Tych be the category of Tychonoff S-spaces for a topological monoid S. We study the cofree S-spaces and cofree S-flows over topological spaces and we prove that for any topological space X and a topological monoid S, the function space C(S,X) with the compact-open topology and the action s · f...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitat Politècnica de València
2012-04-01
|
Series: | Applied General Topology |
Subjects: | |
Online Access: | http://polipapers.upv.es/index.php/AGT/article/view/1632 |
_version_ | 1818549299155304448 |
---|---|
author | Behnam Khosravi |
author_facet | Behnam Khosravi |
author_sort | Behnam Khosravi |
collection | DOAJ |
description | Let S-Tych be the category of Tychonoff S-spaces for a topological monoid S. We study the cofree S-spaces and cofree S-flows over topological spaces and we prove that for any topological space X and a topological monoid S, the function space C(S,X) with the compact-open topology and the action s · f = (t → f(st)) is the cofree S-space over X if and only if the compact-open topology is admissible and Tychonoff. Finally we study injective S-spaces and we characterize injective cofree S-spaces, when the compact-open topology is admissible and Tychonoff. As a consequence of this result, we characterize the cofree S-spaces and cofree S-flows, when S is a locally compact topological monoid. |
first_indexed | 2024-12-12T08:31:33Z |
format | Article |
id | doaj.art-625fa38a6d2a44cf9d66aded8cb50ca4 |
institution | Directory Open Access Journal |
issn | 1576-9402 1989-4147 |
language | English |
last_indexed | 2024-12-12T08:31:33Z |
publishDate | 2012-04-01 |
publisher | Universitat Politècnica de València |
record_format | Article |
series | Applied General Topology |
spelling | doaj.art-625fa38a6d2a44cf9d66aded8cb50ca42022-12-22T00:31:05ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472012-04-0113111010.4995/agt.2012.16321334On cofree S-spaces and cofree S-flowsBehnam Khosravi0Institute for Advanced Studies in Basic SciencesLet S-Tych be the category of Tychonoff S-spaces for a topological monoid S. We study the cofree S-spaces and cofree S-flows over topological spaces and we prove that for any topological space X and a topological monoid S, the function space C(S,X) with the compact-open topology and the action s · f = (t → f(st)) is the cofree S-space over X if and only if the compact-open topology is admissible and Tychonoff. Finally we study injective S-spaces and we characterize injective cofree S-spaces, when the compact-open topology is admissible and Tychonoff. As a consequence of this result, we characterize the cofree S-spaces and cofree S-flows, when S is a locally compact topological monoid.http://polipapers.upv.es/index.php/AGT/article/view/1632S-spaceS-flowCofree S-spaceCofree S-flow Compact-open topologyInjective S-space |
spellingShingle | Behnam Khosravi On cofree S-spaces and cofree S-flows Applied General Topology S-space S-flow Cofree S-space Cofree S-flow Compact-open topology Injective S-space |
title | On cofree S-spaces and cofree S-flows |
title_full | On cofree S-spaces and cofree S-flows |
title_fullStr | On cofree S-spaces and cofree S-flows |
title_full_unstemmed | On cofree S-spaces and cofree S-flows |
title_short | On cofree S-spaces and cofree S-flows |
title_sort | on cofree s spaces and cofree s flows |
topic | S-space S-flow Cofree S-space Cofree S-flow Compact-open topology Injective S-space |
url | http://polipapers.upv.es/index.php/AGT/article/view/1632 |
work_keys_str_mv | AT behnamkhosravi oncofreesspacesandcofreesflows |