Iterative solution of elliptic equations

We reduce solution of the Dirichlet problem ($x \in D \subset R^m$) \[ \Delta u(x)+a(x)u(x)=f(x) \quad \mbox{in $D$}, \qquad u=0 \quad \mbox{on $\partial D$} \] to iterative solution of a simpler problem \[ \Delta u=f(x) \; \; \mbox{in $D$}, \; \; u=0 \; \; \mbox{on $\partial D$} \,, \] for which...

Full description

Bibliographic Details
Main Authors: Philip Korman, Dieter Schmidt
Format: Article
Language:English
Published: University of Szeged 2022-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=9775
Description
Summary:We reduce solution of the Dirichlet problem ($x \in D \subset R^m$) \[ \Delta u(x)+a(x)u(x)=f(x) \quad \mbox{in $D$}, \qquad u=0 \quad \mbox{on $\partial D$} \] to iterative solution of a simpler problem \[ \Delta u=f(x) \; \; \mbox{in $D$}, \; \; u=0 \; \; \mbox{on $\partial D$} \,, \] for which one can use either Fourier series or Green's function method. The method is suitable for numerical computations, particularly when one uses Newton's method for semilinear problems \[ \Delta u+g(x,u)=0 \quad \mbox{in $D$}, \qquad u=0 \quad \mbox{on $\partial D$}, \] in dimensions $m \geq 3$.
ISSN:1417-3875