From Adsorbent to Photocatalyst: The Sensitization Effect of SnO<sub>2</sub> Surface towards Dye Photodecomposition
Semiconductor photocatalysis is considered one of the most promising technologies for water purification from toxic organic dyes. However, to reliably evaluate the possibility of using a given material as a photocatalyst, it is crucial to investigate not only the photocatalytic activity but also its...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-11-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/26/23/7123 |
_version_ | 1797507427387572224 |
---|---|
author | Kinga Michalec Anna Kusior |
author_facet | Kinga Michalec Anna Kusior |
author_sort | Kinga Michalec |
collection | DOAJ |
description | Semiconductor photocatalysis is considered one of the most promising technologies for water purification from toxic organic dyes. However, to reliably evaluate the possibility of using a given material as a photocatalyst, it is crucial to investigate not only the photocatalytic activity but also its affinity towards various dyes and reusability. In this work, we studied the adsorptive/photocatalytic properties of hollow-spherical raspberry-like SnO<sub>2</sub> and its SnO<sub>2</sub>/SnS<sub>2</sub> heterostructures that were obtained via a chemical conversion method using three different concentrations of a sulfide precursor (thioacetamide). The adsorptive/photocatalytic properties of the samples towards cationic rhodamine B (RhB) and anionic indigo carmine (IC) were analyzed using uncommon wall zeta potential measurements, hydrodynamic diameter studies, and adsorption/photodecomposition tests. Moreover, after conducting cyclic experiments, we investigated the (micro)structural changes of the reused photocatalysts by scanning electron microscopy and Fourier-transform infrared spectroscopy. The obtained results revealed that the sensitization of SnO<sub>2</sub> resulted not only in the significantly enhanced photocatalytic performance of the heterostructures, but also completely changed their affinity towards dyes. Furthermore, despite the seemingly best photocatalytic performance, the sample with the highest SnS<sub>2</sub> content was unstable due to its (micro)structure. This work demonstrates that dye adsorption/desorption processes may overlap the results of cyclic photodecomposition kinetics. |
first_indexed | 2024-03-10T04:48:20Z |
format | Article |
id | doaj.art-627c483cfd8940d1881eeacd75fad35c |
institution | Directory Open Access Journal |
issn | 1420-3049 |
language | English |
last_indexed | 2024-03-10T04:48:20Z |
publishDate | 2021-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Molecules |
spelling | doaj.art-627c483cfd8940d1881eeacd75fad35c2023-11-23T02:47:42ZengMDPI AGMolecules1420-30492021-11-012623712310.3390/molecules26237123From Adsorbent to Photocatalyst: The Sensitization Effect of SnO<sub>2</sub> Surface towards Dye PhotodecompositionKinga Michalec0Anna Kusior1Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, PolandFaculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, PolandSemiconductor photocatalysis is considered one of the most promising technologies for water purification from toxic organic dyes. However, to reliably evaluate the possibility of using a given material as a photocatalyst, it is crucial to investigate not only the photocatalytic activity but also its affinity towards various dyes and reusability. In this work, we studied the adsorptive/photocatalytic properties of hollow-spherical raspberry-like SnO<sub>2</sub> and its SnO<sub>2</sub>/SnS<sub>2</sub> heterostructures that were obtained via a chemical conversion method using three different concentrations of a sulfide precursor (thioacetamide). The adsorptive/photocatalytic properties of the samples towards cationic rhodamine B (RhB) and anionic indigo carmine (IC) were analyzed using uncommon wall zeta potential measurements, hydrodynamic diameter studies, and adsorption/photodecomposition tests. Moreover, after conducting cyclic experiments, we investigated the (micro)structural changes of the reused photocatalysts by scanning electron microscopy and Fourier-transform infrared spectroscopy. The obtained results revealed that the sensitization of SnO<sub>2</sub> resulted not only in the significantly enhanced photocatalytic performance of the heterostructures, but also completely changed their affinity towards dyes. Furthermore, despite the seemingly best photocatalytic performance, the sample with the highest SnS<sub>2</sub> content was unstable due to its (micro)structure. This work demonstrates that dye adsorption/desorption processes may overlap the results of cyclic photodecomposition kinetics.https://www.mdpi.com/1420-3049/26/23/7123heterostructureSnO<sub>2</sub>SnS<sub>2</sub>photocatalysisadsorptionsensitization |
spellingShingle | Kinga Michalec Anna Kusior From Adsorbent to Photocatalyst: The Sensitization Effect of SnO<sub>2</sub> Surface towards Dye Photodecomposition Molecules heterostructure SnO<sub>2</sub> SnS<sub>2</sub> photocatalysis adsorption sensitization |
title | From Adsorbent to Photocatalyst: The Sensitization Effect of SnO<sub>2</sub> Surface towards Dye Photodecomposition |
title_full | From Adsorbent to Photocatalyst: The Sensitization Effect of SnO<sub>2</sub> Surface towards Dye Photodecomposition |
title_fullStr | From Adsorbent to Photocatalyst: The Sensitization Effect of SnO<sub>2</sub> Surface towards Dye Photodecomposition |
title_full_unstemmed | From Adsorbent to Photocatalyst: The Sensitization Effect of SnO<sub>2</sub> Surface towards Dye Photodecomposition |
title_short | From Adsorbent to Photocatalyst: The Sensitization Effect of SnO<sub>2</sub> Surface towards Dye Photodecomposition |
title_sort | from adsorbent to photocatalyst the sensitization effect of sno sub 2 sub surface towards dye photodecomposition |
topic | heterostructure SnO<sub>2</sub> SnS<sub>2</sub> photocatalysis adsorption sensitization |
url | https://www.mdpi.com/1420-3049/26/23/7123 |
work_keys_str_mv | AT kingamichalec fromadsorbenttophotocatalystthesensitizationeffectofsnosub2subsurfacetowardsdyephotodecomposition AT annakusior fromadsorbenttophotocatalystthesensitizationeffectofsnosub2subsurfacetowardsdyephotodecomposition |