Multiple Hungarian Method for <i>k</i>-Assignment Problem

The <i>k</i>-assignment problem (or, the <i>k</i>-matching problem) on <i>k</i>-partite graphs is an NP-hard problem for <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>...

Full description

Bibliographic Details
Main Authors: Boštjan Gabrovšek, Tina Novak, Janez Povh, Darja Rupnik Poklukar, Janez Žerovnik
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/11/2050
_version_ 1797547627114397696
author Boštjan Gabrovšek
Tina Novak
Janez Povh
Darja Rupnik Poklukar
Janez Žerovnik
author_facet Boštjan Gabrovšek
Tina Novak
Janez Povh
Darja Rupnik Poklukar
Janez Žerovnik
author_sort Boštjan Gabrovšek
collection DOAJ
description The <i>k</i>-assignment problem (or, the <i>k</i>-matching problem) on <i>k</i>-partite graphs is an NP-hard problem for <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></semantics></math></inline-formula>. In this paper we introduce five new heuristics. Two algorithms, <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">B</mi><mi>m</mi></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">C</mi><mi>m</mi></msub></semantics></math></inline-formula>, arise as natural improvements of Algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">A</mi><mi>m</mi></msub></semantics></math></inline-formula> from (He et al., in: Graph Algorithms And Applications 2, World Scientific, 2004). The other three algorithms, <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">D</mi><mi>m</mi></msub></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">E</mi><mi>m</mi></msub></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">F</mi><mi>m</mi></msub></semantics></math></inline-formula>, incorporate randomization. Algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">D</mi><mi>m</mi></msub></semantics></math></inline-formula> can be considered as a greedy version of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">B</mi><mi>m</mi></msub></semantics></math></inline-formula>, whereas <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">E</mi><mi>m</mi></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">F</mi><mi>m</mi></msub></semantics></math></inline-formula> are versions of local search algorithm, specialized for the <i>k</i>-matching problem. The algorithms are implemented in Python and are run on three datasets. On the datasets available, all the algorithms clearly outperform Algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">A</mi><mi>m</mi></msub></semantics></math></inline-formula> in terms of solution quality. On the first dataset with known optimal values the average relative error ranges from 1.47% over optimum (algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">A</mi><mi>m</mi></msub></semantics></math></inline-formula>) to 0.08% over optimum (algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">E</mi><mi>m</mi></msub></semantics></math></inline-formula>). On the second dataset with known optimal values the average relative error ranges from 4.41% over optimum (algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">A</mi><mi>m</mi></msub></semantics></math></inline-formula>) to 0.45% over optimum (algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">F</mi><mi>m</mi></msub></semantics></math></inline-formula>). Better quality of solutions demands higher computation times, thus the new algorithms provide a good compromise between quality of solutions and computation time.
first_indexed 2024-03-10T14:46:45Z
format Article
id doaj.art-6285a8cf440d4079bb5daa0f3a4d4ae1
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T14:46:45Z
publishDate 2020-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-6285a8cf440d4079bb5daa0f3a4d4ae12023-11-20T21:17:12ZengMDPI AGMathematics2227-73902020-11-01811205010.3390/math8112050Multiple Hungarian Method for <i>k</i>-Assignment ProblemBoštjan Gabrovšek0Tina Novak1Janez Povh2Darja Rupnik Poklukar3Janez Žerovnik4Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, SI-1000 Ljubljana, SloveniaFaculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, SI-1000 Ljubljana, SloveniaFaculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, SI-1000 Ljubljana, SloveniaFaculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, SI-1000 Ljubljana, SloveniaFaculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, SI-1000 Ljubljana, SloveniaThe <i>k</i>-assignment problem (or, the <i>k</i>-matching problem) on <i>k</i>-partite graphs is an NP-hard problem for <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></semantics></math></inline-formula>. In this paper we introduce five new heuristics. Two algorithms, <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">B</mi><mi>m</mi></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">C</mi><mi>m</mi></msub></semantics></math></inline-formula>, arise as natural improvements of Algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">A</mi><mi>m</mi></msub></semantics></math></inline-formula> from (He et al., in: Graph Algorithms And Applications 2, World Scientific, 2004). The other three algorithms, <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">D</mi><mi>m</mi></msub></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">E</mi><mi>m</mi></msub></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">F</mi><mi>m</mi></msub></semantics></math></inline-formula>, incorporate randomization. Algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">D</mi><mi>m</mi></msub></semantics></math></inline-formula> can be considered as a greedy version of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">B</mi><mi>m</mi></msub></semantics></math></inline-formula>, whereas <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">E</mi><mi>m</mi></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">F</mi><mi>m</mi></msub></semantics></math></inline-formula> are versions of local search algorithm, specialized for the <i>k</i>-matching problem. The algorithms are implemented in Python and are run on three datasets. On the datasets available, all the algorithms clearly outperform Algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">A</mi><mi>m</mi></msub></semantics></math></inline-formula> in terms of solution quality. On the first dataset with known optimal values the average relative error ranges from 1.47% over optimum (algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">A</mi><mi>m</mi></msub></semantics></math></inline-formula>) to 0.08% over optimum (algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">E</mi><mi>m</mi></msub></semantics></math></inline-formula>). On the second dataset with known optimal values the average relative error ranges from 4.41% over optimum (algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">A</mi><mi>m</mi></msub></semantics></math></inline-formula>) to 0.45% over optimum (algorithm <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">F</mi><mi>m</mi></msub></semantics></math></inline-formula>). Better quality of solutions demands higher computation times, thus the new algorithms provide a good compromise between quality of solutions and computation time.https://www.mdpi.com/2227-7390/8/11/2050k-assignment problemk-matching problemheuristic algorithmlocal searchgreedy algorithmhungarian method
spellingShingle Boštjan Gabrovšek
Tina Novak
Janez Povh
Darja Rupnik Poklukar
Janez Žerovnik
Multiple Hungarian Method for <i>k</i>-Assignment Problem
Mathematics
k-assignment problem
k-matching problem
heuristic algorithm
local search
greedy algorithm
hungarian method
title Multiple Hungarian Method for <i>k</i>-Assignment Problem
title_full Multiple Hungarian Method for <i>k</i>-Assignment Problem
title_fullStr Multiple Hungarian Method for <i>k</i>-Assignment Problem
title_full_unstemmed Multiple Hungarian Method for <i>k</i>-Assignment Problem
title_short Multiple Hungarian Method for <i>k</i>-Assignment Problem
title_sort multiple hungarian method for i k i assignment problem
topic k-assignment problem
k-matching problem
heuristic algorithm
local search
greedy algorithm
hungarian method
url https://www.mdpi.com/2227-7390/8/11/2050
work_keys_str_mv AT bostjangabrovsek multiplehungarianmethodforikiassignmentproblem
AT tinanovak multiplehungarianmethodforikiassignmentproblem
AT janezpovh multiplehungarianmethodforikiassignmentproblem
AT darjarupnikpoklukar multiplehungarianmethodforikiassignmentproblem
AT janezzerovnik multiplehungarianmethodforikiassignmentproblem