Using fisheries observation data to develop a predictive species distribution model for endangered sea turtles

Abstract The Eastern Pacific leatherback turtle population (Dermochelys coriacea) has declined precipitously in recent years. One of the major causes is bycatch from coastal and pelagic fisheries. Fisheries observations are often underutilized, despite strong potential for this data to affect policy...

Full description

Bibliographic Details
Main Authors: Jennie Hannah Degenford, Dong Liang, Helen Bailey, Aimee L. Hoover, Patricia Zarate, Jorge Azócar, Daniel Devia, Joanna Alfaro‐Shigueto, Jeffery C. Mangel, Nelly de Paz, Javier Quinones Davila, David Sarmiento Barturen, Juan M. Rguez‐Baron, Amanda S. Williard, Christina Fahy, Nicole Barbour, George L. Shillinger
Format: Article
Language:English
Published: Wiley 2021-02-01
Series:Conservation Science and Practice
Subjects:
Online Access:https://doi.org/10.1111/csp2.349
_version_ 1827792926098325504
author Jennie Hannah Degenford
Dong Liang
Helen Bailey
Aimee L. Hoover
Patricia Zarate
Jorge Azócar
Daniel Devia
Joanna Alfaro‐Shigueto
Jeffery C. Mangel
Nelly de Paz
Javier Quinones Davila
David Sarmiento Barturen
Juan M. Rguez‐Baron
Amanda S. Williard
Christina Fahy
Nicole Barbour
George L. Shillinger
author_facet Jennie Hannah Degenford
Dong Liang
Helen Bailey
Aimee L. Hoover
Patricia Zarate
Jorge Azócar
Daniel Devia
Joanna Alfaro‐Shigueto
Jeffery C. Mangel
Nelly de Paz
Javier Quinones Davila
David Sarmiento Barturen
Juan M. Rguez‐Baron
Amanda S. Williard
Christina Fahy
Nicole Barbour
George L. Shillinger
author_sort Jennie Hannah Degenford
collection DOAJ
description Abstract The Eastern Pacific leatherback turtle population (Dermochelys coriacea) has declined precipitously in recent years. One of the major causes is bycatch from coastal and pelagic fisheries. Fisheries observations are often underutilized, despite strong potential for this data to affect policy. In this study, we created a spatiotemporal species distribution model that synthesizes fisheries observations with remotely sensed environmental data. The model will be developed into a dynamic management tool for the Eastern Pacific leatherback population. We obtained leatherback observation data from multiple fisheries that have operated in the Southeast Pacific (2001–2018). A dynamic Poisson point process model was applied to predict leatherback intensity (observation per unit area) as a function of dynamic environmental covariates. This model serves as a tool for application by managers and stakeholders toward the reduction of leatherback turtle bycatch and provides a modeling framework for analyzing fisheries observations from other vulnerable populations and species.
first_indexed 2024-03-11T18:10:08Z
format Article
id doaj.art-62a1aef1d419443ab3d6cd75d415280d
institution Directory Open Access Journal
issn 2578-4854
language English
last_indexed 2024-03-11T18:10:08Z
publishDate 2021-02-01
publisher Wiley
record_format Article
series Conservation Science and Practice
spelling doaj.art-62a1aef1d419443ab3d6cd75d415280d2023-10-16T14:51:41ZengWileyConservation Science and Practice2578-48542021-02-0132n/an/a10.1111/csp2.349Using fisheries observation data to develop a predictive species distribution model for endangered sea turtlesJennie Hannah Degenford0Dong Liang1Helen Bailey2Aimee L. Hoover3Patricia Zarate4Jorge Azócar5Daniel Devia6Joanna Alfaro‐Shigueto7Jeffery C. Mangel8Nelly de Paz9Javier Quinones Davila10David Sarmiento Barturen11Juan M. Rguez‐Baron12Amanda S. Williard13Christina Fahy14Nicole Barbour15George L. Shillinger16Chesapeake Biological Laboratory University of Maryland Center for Environmental Science Solomons Maryland USAChesapeake Biological Laboratory University of Maryland Center for Environmental Science Solomons Maryland USAChesapeake Biological Laboratory University of Maryland Center for Environmental Science Solomons Maryland USAChesapeake Biological Laboratory University of Maryland Center for Environmental Science Solomons Maryland USAInstituto de Fomento Pesquero Valparaíso Región de Valparaíso ChileInstituto de Fomento Pesquero Valparaíso Región de Valparaíso ChileInstituto de Fomento Pesquero Valparaíso Región de Valparaíso ChileProDelphinus Lima PeruProDelphinus Lima PeruAreas Costeras y Recursos Marinos Pisco PeruLaboratorio Costero de Pisco, Instituto del Mar del Perú Paracas PeruLaboratorio Costero de Pisco, Instituto del Mar del Perú Paracas PeruJUSTSEA Foundation Bogota ColombiaDepartment of Biology and Marine Biology University of North Carolina Wilmington Wilmington North Carolina USAProtected Resources Division, West Coast Regional Office National Marine Fisheries Service Long Beach California USAChesapeake Biological Laboratory University of Maryland Center for Environmental Science Solomons Maryland USAUpwell, Heritage Harbor Complex Monterey California USAAbstract The Eastern Pacific leatherback turtle population (Dermochelys coriacea) has declined precipitously in recent years. One of the major causes is bycatch from coastal and pelagic fisheries. Fisheries observations are often underutilized, despite strong potential for this data to affect policy. In this study, we created a spatiotemporal species distribution model that synthesizes fisheries observations with remotely sensed environmental data. The model will be developed into a dynamic management tool for the Eastern Pacific leatherback population. We obtained leatherback observation data from multiple fisheries that have operated in the Southeast Pacific (2001–2018). A dynamic Poisson point process model was applied to predict leatherback intensity (observation per unit area) as a function of dynamic environmental covariates. This model serves as a tool for application by managers and stakeholders toward the reduction of leatherback turtle bycatch and provides a modeling framework for analyzing fisheries observations from other vulnerable populations and species.https://doi.org/10.1111/csp2.349dynamic Poisson process modelhabitat‐based modelleatherback turtleSoutheast Pacific Ocean
spellingShingle Jennie Hannah Degenford
Dong Liang
Helen Bailey
Aimee L. Hoover
Patricia Zarate
Jorge Azócar
Daniel Devia
Joanna Alfaro‐Shigueto
Jeffery C. Mangel
Nelly de Paz
Javier Quinones Davila
David Sarmiento Barturen
Juan M. Rguez‐Baron
Amanda S. Williard
Christina Fahy
Nicole Barbour
George L. Shillinger
Using fisheries observation data to develop a predictive species distribution model for endangered sea turtles
Conservation Science and Practice
dynamic Poisson process model
habitat‐based model
leatherback turtle
Southeast Pacific Ocean
title Using fisheries observation data to develop a predictive species distribution model for endangered sea turtles
title_full Using fisheries observation data to develop a predictive species distribution model for endangered sea turtles
title_fullStr Using fisheries observation data to develop a predictive species distribution model for endangered sea turtles
title_full_unstemmed Using fisheries observation data to develop a predictive species distribution model for endangered sea turtles
title_short Using fisheries observation data to develop a predictive species distribution model for endangered sea turtles
title_sort using fisheries observation data to develop a predictive species distribution model for endangered sea turtles
topic dynamic Poisson process model
habitat‐based model
leatherback turtle
Southeast Pacific Ocean
url https://doi.org/10.1111/csp2.349
work_keys_str_mv AT jenniehannahdegenford usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT dongliang usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT helenbailey usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT aimeelhoover usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT patriciazarate usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT jorgeazocar usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT danieldevia usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT joannaalfaroshigueto usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT jefferycmangel usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT nellydepaz usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT javierquinonesdavila usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT davidsarmientobarturen usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT juanmrguezbaron usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT amandaswilliard usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT christinafahy usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT nicolebarbour usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles
AT georgelshillinger usingfisheriesobservationdatatodevelopapredictivespeciesdistributionmodelforendangeredseaturtles