TNF-α antagonists differentially induce TGF-β1-dependent resuscitation of dormant-like Mycobacterium tuberculosis.

TNF-α- as well as non-TNF-α-targeting biologics are prescribed to treat a variety of immune-mediated inflammatory disorders. The well-documented risk of tuberculosis progression associated with anti-TNF-α treatment highlighted the central role of TNF-α for the maintenance of protective immunity, alt...

Full description

Bibliographic Details
Main Authors: Ainhoa Arbués, Dominique Brees, Salah-Dine Chibout, Todd Fox, Michael Kammüller, Damien Portevin
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-02-01
Series:PLoS Pathogens
Online Access:https://doi.org/10.1371/journal.ppat.1008312
Description
Summary:TNF-α- as well as non-TNF-α-targeting biologics are prescribed to treat a variety of immune-mediated inflammatory disorders. The well-documented risk of tuberculosis progression associated with anti-TNF-α treatment highlighted the central role of TNF-α for the maintenance of protective immunity, although the rate of tuberculosis detected among patients varies with the nature of the drug. Using a human, in-vitro granuloma model, we reproduce the increased reactivation rate of tuberculosis following exposure to Adalimumab compared to Etanercept, two TNF-α-neutralizing biologics. We show that Adalimumab, because of its bivalence, specifically induces TGF-β1-dependent Mycobacterium tuberculosis (Mtb) resuscitation which can be prevented by concomitant TGF-β1 neutralization. Moreover, our data suggest an additional role of lymphotoxin-α-neutralized by Etanercept but not Adalimumab-in the control of latent tuberculosis infection. Furthermore, we show that, while Secukinumab, an anti-IL-17A antibody, does not revert Mtb dormancy, the anti-IL-12-p40 antibody Ustekinumab and the recombinant IL-1RA Anakinra promote Mtb resuscitation, in line with the importance of these pathways in tuberculosis immunity.
ISSN:1553-7366
1553-7374