Исключение интегрального члена в уравнениях одной эредитарной системы, связанной с задачей гидромагнитного динамо
В работе изучается двумерная система интегро-дифференциальных уравнений, которая является простейшей эредитарной моделью двумодового гидромагнитного динамо. Учет пространственной и временной нелокальности взаимодействий в динамо-системах сейчас активно исследуется. В маломодовых приближениях уравнен...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
KamGU by Vitus Bering
2023-04-01
|
Series: | Vestnik KRAUNC: Fiziko-Matematičeskie Nauki |
Subjects: | |
Online Access: | https://krasec.ru/ru/vodinchar421023/ |
Summary: | В работе изучается двумерная система интегро-дифференциальных уравнений, которая является простейшей эредитарной моделью двумодового гидромагнитного динамо. Учет пространственной и временной нелокальности взаимодействий в динамо-системах сейчас активно исследуется. В маломодовых приближениях уравнений динамо можно рассматривать только временную нелокальность, т.е. эредитарность (память). Память в исследуемой системе реализована в виде обратной связи, распределенной по всем прошлым состояниям системы. Обратная связь представлена с помощью интегрального члена типа свертки от квадратичной комбинации фазовых переменных с ядром достаточно общего вида. Этот член моделирует подавление турбулентного генератора поля (α-эффекта) квадратичной формой от фазовых переменных. В реальных динамо-системах такое подавление обеспечивается силой Лоренца. Основной результат работы – доказательство возможности исключения интегрального члена для одного класса ядер. Такие ядра являются решениями однородного линейного дифференциального уравнения с постоянными коэффициентами. Доказано, что исследуемую интегро-дифференциальную систему можно заменить дифференциальной системой большей размерности с подходящими начальными условиями на дополнительные фазовые переменные. Если ядро является решением уравнения n-го порядка, то размерность системы может достигать 3n−2 и зависит от начальных условий, которым удовлетворяет ядро. В работе используются классические методы теории дифференциальных уравнений. Приводятся примеры динамических систем, возникающих при некоторых ядрах в результате исключения интегрального члена. Результаты работы можно использовать для верификации вычислительных алгоритмов и программных кодов, разработанных для решения интегро-дифференциальных уравнений. |
---|---|
ISSN: | 2079-6641 2079-665X |