Radiomics based on 18F‐FDG PET/CT could differentiate breast carcinoma from breast lymphoma using machine‐learning approach: A preliminary study

Abstract Purpose Our study assessed the ability 18F‐fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) radiomics to differentiate breast carcinoma from breast lymphoma using machine‐learning approach. Methods Sixty‐five breast nodules from 44 patients diagnosed as b...

Full description

Bibliographic Details
Main Authors: Xuejin Ou, Jing Zhang, Jian Wang, Fuwen Pang, Yongsheng Wang, Xiawei Wei, Xuelei Ma
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Cancer Medicine
Subjects:
Online Access:https://doi.org/10.1002/cam4.2711
Description
Summary:Abstract Purpose Our study assessed the ability 18F‐fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) radiomics to differentiate breast carcinoma from breast lymphoma using machine‐learning approach. Methods Sixty‐five breast nodules from 44 patients diagnosed as breast carcinoma or breast lymphoma were included. Standardized uptake value (SUV) and radiomic features from CT and PET images were extracted using local image features extraction software. Six discriminative models including PETa (based on clinical, SUV and radiomic features from PET images), PETb (SUV and radiomic features from PET images), PETc (radiomic features only from PET images), CTa (clinical and radiomic features from CT images), CTb (radiomic features only from CT images), and SUV model were generated using least absolute shrinkage and selection operator method and linear discriminant analysis. The areas under the receiver operating characteristic curve (AUCs), accuracy, sensitivity, and specificity were calculated to evaluate the discriminative ability of these models. Results PETa and CTa models showed the best ability to differentiation in training and validation group (AUCs of 0.867 and 0.806 for PETa model, AUCs of 0.891 and 0.759 for CTa model, respectively). Conclusion Models based on clinical, SUV, and radiomic features of 18F‐FDG PET/CT images could accurately discriminate breast carcinoma from breast lymphoma.
ISSN:2045-7634