Machine Learning Descriptors for Data‐Driven Catalysis Study
Abstract Traditional trial‐and‐error experiments and theoretical simulations have difficulty optimizing catalytic processes and developing new, better‐performing catalysts. Machine learning (ML) provides a promising approach for accelerating catalysis research due to its powerful learning and predic...
Hlavní autoři: | , , , , |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Wiley
2023-08-01
|
Edice: | Advanced Science |
Témata: | |
On-line přístup: | https://doi.org/10.1002/advs.202301020 |