HYPERBOLIC MODEL OF NON -STATIONARY THERMAL CONDUCTIVITY

The article presents fundamentally new results on the analytical theory of thermal conductivity for hyperbolic transport models. The questions of the correct formulation of boundary value problems are considered. A technique for finding exact analytical solutions of a rather complex class of boundar...

Full description

Bibliographic Details
Main Authors: E. M. Kartashov, I. V. Antonova
Format: Article
Language:Russian
Published: MIREA - Russian Technological University 2016-04-01
Series:Тонкие химические технологии
Subjects:
Online Access:https://www.finechem-mirea.ru/jour/article/view/21
_version_ 1797882038968123392
author E. M. Kartashov
I. V. Antonova
author_facet E. M. Kartashov
I. V. Antonova
author_sort E. M. Kartashov
collection DOAJ
description The article presents fundamentally new results on the analytical theory of thermal conductivity for hyperbolic transport models. The questions of the correct formulation of boundary value problems are considered. A technique for finding exact analytical solutions of a rather complex class of boundary value problems based on the method of Green's functions and operational calculus is developed.
first_indexed 2024-04-10T03:29:41Z
format Article
id doaj.art-62c6f7eb6b95413faa5abde20864517f
institution Directory Open Access Journal
issn 2410-6593
2686-7575
language Russian
last_indexed 2024-04-10T03:29:41Z
publishDate 2016-04-01
publisher MIREA - Russian Technological University
record_format Article
series Тонкие химические технологии
spelling doaj.art-62c6f7eb6b95413faa5abde20864517f2023-03-13T07:25:36ZrusMIREA - Russian Technological UniversityТонкие химические технологии2410-65932686-75752016-04-01112748010.32362/2410-6593-2016-11-2-74-8021HYPERBOLIC MODEL OF NON -STATIONARY THERMAL CONDUCTIVITYE. M. Kartashov0I. V. Antonova1Moscow Technological University (Institute of Fine Chemical Technologies)Moscow Technological University (Institute of Fine Chemical Technologies)The article presents fundamentally new results on the analytical theory of thermal conductivity for hyperbolic transport models. The questions of the correct formulation of boundary value problems are considered. A technique for finding exact analytical solutions of a rather complex class of boundary value problems based on the method of Green's functions and operational calculus is developed.https://www.finechem-mirea.ru/jour/article/view/21transport modela hyperbolic equation boundaryvalue problemsanalytical solutions
spellingShingle E. M. Kartashov
I. V. Antonova
HYPERBOLIC MODEL OF NON -STATIONARY THERMAL CONDUCTIVITY
Тонкие химические технологии
transport model
a hyperbolic equation boundary
value problems
analytical solutions
title HYPERBOLIC MODEL OF NON -STATIONARY THERMAL CONDUCTIVITY
title_full HYPERBOLIC MODEL OF NON -STATIONARY THERMAL CONDUCTIVITY
title_fullStr HYPERBOLIC MODEL OF NON -STATIONARY THERMAL CONDUCTIVITY
title_full_unstemmed HYPERBOLIC MODEL OF NON -STATIONARY THERMAL CONDUCTIVITY
title_short HYPERBOLIC MODEL OF NON -STATIONARY THERMAL CONDUCTIVITY
title_sort hyperbolic model of non stationary thermal conductivity
topic transport model
a hyperbolic equation boundary
value problems
analytical solutions
url https://www.finechem-mirea.ru/jour/article/view/21
work_keys_str_mv AT emkartashov hyperbolicmodelofnonstationarythermalconductivity
AT ivantonova hyperbolicmodelofnonstationarythermalconductivity